HW solutions

Md Rasheduzzaman
2025-09-09

dataframe, matrices, list, factor, vector, tidyverse, etc.

Table of contents

1 L3:

1.1

1.2

1.3

14

Matrices and Lists 2
Task 1: Protein Quantification in Biological Samples 2
1.1.1 1. Matrices o e 2
1.1.2 2. Making transpose of ProteinMatrix 3
1.1.3 3. Identity Matrix 4
1.1.4 4.1. Total Protein per Sample 4
1.1.5 4.2. Total Protein per Protein Type 4
1.1.6 4.3. Heatmap of Protein Concentrations 4
1.1.7 Interpretation)
Task 2: Gene-to-Protein Translation 6
1.2.1 Protein OQutput 7
1.2.2 2. Transpose o .. 7
1.2.3 3. Identity matrix and multipliccation 7
1.2.4 4. Sub-matrix: e 8
1.2.5 Visualization tasks: o o 8
1.2.6 Interpretation o oo 11
Task 3: Animal Breeding — Bull Ranking by Economic Traits 11
1.3.1 Define Data 11
1.3.2 Compute Total Economic Value. 12
1.3.3 Multiply with Identity Matrix 12
1.3.4 Remove Milk Yield and Recalculate Total Value 13
1.3.5 Bar Plot: Total Economic Value 13
1.3.6 Heatmap of EBVs 14
1.3.7 Interpretation Questions 15
Task 4: Plant Breeding — Trait Contributions from Parental Lines 16
1.4.1 Define Data 16

1.4.2 Compute HybridTraits Vector 16

1.4.3 Multiply with Identity Matrix 17
1.44 Remove T3 (Maturation Time) and Recalculate 17
1.4.5 Heatmap of ParentTraits 18
1.4.6 Bar Plot of Hybrid Traits 19
1.4.7 Interpretation Questions 20
1.5 Task 5: Managing Matrices and Weight Vectors Using Listsin R 21
1.5.1 Createa Master List L 21
1.5.2 List the Structure 22
1.5.3 Indexing Elements from Lists 23
1.5.4 Perform Weighted Calculations 24
1.5.5 Subset and Recalculateo 25
1.5.6 Visualization Tasks L oo 25
1.5.7 Interpretation Questions 28
1.6 Homework solutions: Factors, Subsetting, and Biological Insight 28
1.7 Homework Solution tidyverse 33

1 L3: Matrices and Lists

1.1 Task 1: Protein Quantification in Biological Samples

We measured the concentration (in pg/pL) of three proteins (P1, P2, P3) in four samples
(S1-S4):

1.1.1 1. Matrices

Making Protein Matrix
ProteinMatrix <- matrix(

c(5, 3, 2,

7, 6, 4),

nrow = 2, byrow = TRUE
)
rownames (ProteinMatrix)
colnames (ProteinMatrix)
ProteinMatrix

c("Samplel", "Sample2")
c("ProteinX", "ProteinY", "ProteinZ")

ProteinX ProteinY ProteinZ
Samplel 5 3 2
Sample2 7 6 4

Now goes the weight matrix

Making weight matrix

WeightVector <- matrix(
c(0.5, 1.0, 1.5),
nrow=3, byrow = TRUE

)

rownames (WeightVector) = c("ProteinX", "ProteinY", "ProteinZ")
colnames (WeightVector) = c("Weight")

WeightVector

Weight
ProteinX 0.5
ProteinY 1.0
Proteinz 1.5

Now, multiply them.

Multiplying Matrices

TotalConc = ProteinMatrix %x% WeightVector
colnames(TotalConc) <- "Total Protein Conc"
print (TotalConc)

Total_Protein_Conc
Samplel 8.5
Sample2 15.5

1.1.2 2. Making transpose of ProteinMatrix

ProteinMatTranspose = t(ProteinMatrix)
ProteinMatTranspose

Samplel Sample2

ProteinX 5 7
ProteinY 3 6
ProteinZ 2 4

1.1.3 3. Identity Matrix

I <- diag(3)

Identitycheck = ProteinMatrix %*J I

colnames(Identitycheck) <- c("ProteinX", "ProteinY", "ProteinZ")
Identitycheck

ProteinX ProteinY ProteinZ
Samplel 5 3 2
Sample2 7 6 4

1.1.4 4.1. Total Protein per Sample

rowSums (ProteinMatrix)

Samplel Sample2
10 17

1.1.5 4.2. Total Protein per Protein Type

colSums (ProteinMatrix)

ProteinX ProteinY ProteinZ
12 9 6

1.1.6 4.3. Heatmap of Protein Concentrations

heatmap(ProteinMatrix, scale = "none", col = heat.colors(10))

Sample:

Sample:

teinZ
teinY
teinX

1.1.7 Interpretation

o Multiplying the protein levels by the weight vector shows how much each protein con-
tributes in a sample. The result shows total protein concentration per sample.

e The result shows that sample S2 has the highest protein burden.

o The identity matrix represents no protein interactions or measurement biases. It is a
simple matrix calculation.

e New calculation:

changing the weight of ProteinZ to 3.0
newweightvector = matrix(
c(0.5, 1.0, 3.0),
nrow=3, byrow = TRUE
)
rownames (WeightVector) = c("ProteinX", "ProteinV", "ProteinZ")
colnames (WeightVector) = c("Weight")
newTotalconc = ProteinMatrix %+J, newweightvector
colnames (newTotalconc) <- "Total Protein_Conc"
newTotalconc

Total_Protein_Conc
Samplel 11.5

Sample2 21.5

Still, S2 has more protein burden.

Bonus:

e Heatmap reveals PX is most abundant across all samples.

1.2 Task 2: Gene-to-Protein Translation

making Gene Expression matrix
GeneExpression <- matrix(

c(10, 8, 5,
15, 12, 10),
nrow = 2, byrow = TRUE
)
rownames (GeneExpression) <- c("Samplel", "Sample2")
colnames (GeneExpression) <- c("GeneA", "GeneB", "GeneC")
GeneExpression

GeneA GeneB GeneC
Samplel 10 8 5
Sample2 15 12 10

Translation efficiency:

making Translation Matrix
TranslationMatrix <- matrix(
c(1.5, 0, O,
0, 1.2, 0,
0, 0, 1.8),
nrow = 3, byrow = TRUE
)

rownames (TranslationMatrix) <- c("GeneA", "GeneB", "GeneC")
colnames(TranslationMatrix) <- c("protA", "protB", "protC")
TranslationMatrix

protA protB protC
GeneA 1.5 0.0 0.0
GeneB 0.0 1.2 0.0
GeneC 0.0 0.0 1.8

1.2.1 Protein Output

computing Protein matrix
Protein_matrix <- GeneExpression %%), TranslationMatrix

colnames (Protein_matrix) <- c("total_protA", "total_protB", "total_protC")
print (Protein_matrix)

total_protA total_protB total_protC
Samplel 15.0 9.6 9
Sample2 22.5 14.4 18

1.2.2 2. Transpose

Transpose of GeneExpression matrix
GeneExpression_Transpose <- t(GeneExpression)
GeneExpression_Transpose

Samplel Sample2

GeneA 10 15
GeneB 8 12
GeneC 5 10

The new matrix represnts a matrix where the rows and columns of GeneExpression matrix
have been interchanged.

1.2.3 3. Identity matrix and multipliccation

Creating Identity matrix
I <- diag(3)
I

[,11 [,2]1 [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Now, multiply:

Product_matrix = TranslationMatrix %%’ I
Product_matrix

[,11 [,21 [,3]
GeneA 1.5 0.0 0.0
GeneB 0.0 1.2 0.0
GeneC 0.0 0.0 1.8

The product is identical to TranslationMatrix

1.2.4 4. Sub-matrix:

making submatrix A
A = matrix(
c(10, 8,
15, 12), nrow=2, byrow = TRUE

)

rownames (A) = c("samplel", "sample2")
colnames(A) = c("GeneA", "GeneB")

A

GeneA GeneB
samplel 10 8
sample2 15 12

finding inverse of A
#inv_A <- solve(A)
#inv_A

The inverse matrix could not be calculated since A is a singular matrix. So, A * A™-1 is also
not possible.

1.2.5 Visualization tasks:

generating MARplot-style scatter plot

plot(GeneExpression, Protein_matrix, type="p", main="Protein level vs. Gene Expression lev
labels <- "Sample-Gene"

text (GeneExpression, Protein_matrix, labels = labels, pos=3)

Protein level vs. Gene Expression level

N o
< —
E o Sample-Gene
g 2 °
! - Samplg_Gg'a?nple—Gene
D o
+— —
o
E _
_ Sample-Gene
o _)I% Gene pie
| | | | |
6 8 10 12 14

GeneExpression

generating a heatmap
heatmap(Protein_matrix, main= "Heatmap of Protein Level", Rowv = TRUE, Colv = TRUE, labRow

Heatmap of Protein Level
]

Samplez

Samplel

teinA
teinB
teinC

e 2. Heatmap of Expression:

heatmap (GeneExpression, col = terrain.colors(10), scale = "column")

-

— Sample:

10

eneC
eneB
eneA

1.2.6

Interpretation

. Matrix multiplication allows each gene in both samples to be multiplied to their re-

spective translation efficiency. So, the product shows how successfully each gene is
translated”)

The diagonal TranslationMatrix make sense biologically because they show translation
efficiency of each gene and there is no other interaction between them. Although there
could be interaction in real-world scenarios.

If Sample2 has higher protein levels even with similar gene expression, it means that
more mRNAs are translated to proteins compared to Samplel”

The upward trend in MARplot may indicate an increase in translation efficacy and
downward trend may indicate a decline in translation efficacy”

Clustering in the heatmap may suggest which samples are most similar to each other
based on their prot.

1.3 Task 3: Animal Breeding — Bull Ranking by Economic Traits

1.3.1 Define Data

#

Define Bull EBVs

BullEBVs <- matrix(c(

),

400, 1.2, 0.8,
500, 1.5, 0.6
nrow = 2, byrow = TRUE)

rownames (BullEBVs) <- c("Bullil", "Bull2")
colnames (BullEBVs) <- c("Milk_yield", "Growth_rate", "Fertility")
BullEBVs

Milk_yield Growth_rate Fertility

Bulll 400 1.2 0.8
Bull2 500 1.5 0.6
Define Economic Weights

EconomicWeights <- matrix(c(0.002, 50, 100), ncol = 1)
rownames (EconomicWeights) <- colnames(BullEBVs)
colnames (EconomicWeights) <- c("Weight")
EconomicWeights

11

Weight
Milk_yield 2e-03
Growth_rate 5e+01
Fertility le+02

1.3.2 Compute Total Economic Value

TotalValue <- BullEBVs %x*J EconomicWeights
colnames(TotalValue) <- c("Merit")
TotalValue

Merit
Bulll 140.8
Bull2 136.0

Interpretation

Bulll: (400 x 0.002) + (1.2 x 50) + (0.8 x 100) = 140.8
Bull2: (500 x 0.002) + (1.5 x 50) + (0.6 x 100) = 136.0
Bulll is more valuable economically.

Biological Interpretation

Economic weights convert genetic merit (EBVs, Estimated Breeding Values) into economic
merit. Traits with higher financial importance have a larger impact, regardless of absolute
EBV values.

1.3.3 Multiply with Identity Matrix

I3 <- diag(3)
rownames (I3) <- colnames(BullEBVs)
colnames (I3) <- colnames(BullEBVs)

I3
Milk_yield Growth_rate Fertility
Milk_yield 1 0 0
Growth_rate 0 1 0
Fertility 0 0 1

12

BullEBVs_identity <- BullEBVs 7xJ I3
BullEBVs_identity

Milk_yield Growth_rate Fertility

Bull1l 400 1.2 0.8
Bull?2 500 1.5 0.6
Interpretation

Multiplying by identity matrix returns the original matrix. It confirms that EBV structure is
preserved.

1.3.4 Remove Milk Yield and Recalculate Total Value

BullEBVs_noMilk <- BullEBVs[, -1]
EconomicWeights_noMilk <- EconomicWeights[2:3, , drop = FALSE]

TotalValue_noMilk <- BullEBVs_noMilk %%’ EconomicWeights_noMilk

colnames (TotalValue_noMilk) <- c("New_Merit")
TotalValue_noMilk

New_Merit

Bull1l 140
Bull2 135
Interpretation

Bulll: (1.2 x 50) + (0.8 x 100) = 140
Bull2: (1.5 x 50) + (0.6 x 100) = 135
Bulll still ranks higher, but by a smaller margin.

1.3.5 Bar Plot: Total Economic Value

barplot(
TotalValue,
beside = TRUE,
names.arg = rownames (BullEBVs),
col = c("skyblue", "orange"),

13

main = "Total Economic Value of Bulls",
ylab = "Total Value"

Total Economic Value of Bulls

120
|

Total Value
80
|

40

Bulll Bull2

1.3.6 Heatmap of EBVs

heatmap (
BullEBVs,
Rowv = NA,
Colv = NA,
scale = "none",
col = heat.colors(256),
main = "Heatmap of Bull EBVs"

14

Heatmap of Bull EBVs

Bull2

Bulll

D
')
©
S

_yield

artility

1.3.7 Interpretation Questions

e How do economic weights affect trait importance?

Traits with higher weights contribute more to the total economic value. This makes them
more influential in ranking and selection.

o Why might you ignore milk yield?

Milk yield may be excluded in systems focusing on fertility, growth, or when it is no longer a
limiting factor. Environmental or economic contexts may also shift trait priorities.

e What is the value of heatmaps?

Heatmaps visually compare EBVs across bulls and traits. They help detect patterns, outliers,
and clusters easily in multivariate data.

e Can this method be extended to more bulls and traits?

Yes. This method scales to any number of bulls or traits. Just ensure the EBVs matrix and
economic weights are dimensionally compatible.

15

1.4 Task 4: Plant Breeding — Trait Contributions from Parental Lines
1.4.1 Define Data
Parent trait values (normalized 1-10)

ParentTraits <- matrix(c(

7, 5, 3,
6, 8, 4,
5, 6, 6

), nrow = 3, byrow = TRUE)

rownames (ParentTraits) <- c("P1", "P2", "P3")
colnames(ParentTraits) <- c("Drought_resistance", "Yield", "Maturation_time")
ParentTraits

Drought_resistance Yield Maturation_time

P1 7 5 3
P2 6 8 4
P3 5 6 6

Define Hybrid Weights

HybridWeights <- matrix(c(0.5, 0.3, 0.2), nrow = 1)
colnames (HybridWeights) <- colnames(ParentTraits)
rownames (HybridWeights) <- c("Weight")
HybridWeights

Drought_resistance Yield Maturation_time
Weight 0.5 0.3 0.2

1.4.2 Compute HybridTraits Vector

HybridTraits <- HybridWeights %*J, ParentTraits
rownames (HybridTraits) <- c("Contribution")
colnames (HybridTraits) <- rownames(ParentTraits)
HybridTraits

P1 P2 P3
Contribution 6.3 6.1 3.9

16

Interpretation

HybridTraits = (0.5 x P1) + (0.3 x P2) + (0.2 x P3)
Drought_ resistance = (0.5 x 7) + (0.3 x 6) + (0.2 x 5) = 6.3
Yield = (0.5 x 5) + (0.3 x 8) + (0.2 x 6) = 6.1

Maturation time = (0.5 x 3) 4+ (0.3 x 4) 4+ (0.2 x 6) = 3.9

The hybrid is moderately strong in drought resistance and yield, and has a relatively shorter
maturation time.

Biological Meaning of Unequal Contribution

When one parent contributes more to a trait, it suggests that the trait’s heritable strength
comes disproportionately from that parent. Breeders can use this knowledge to amplify desir-
able traits using the best parent.

1.4.3 Multiply with Identity Matrix

I3 <- diag(3)

ParentTraits_identity <- ParentTraits %x*), I3
colnames(ParentTraits_identity) <- colnames(ParentTraits)
ParentTraits_identity

Drought_resistance Yield Maturation_time

P1 7 5 3
P2 6 8 4
P3 5 6 6
Interpretation

Multiplying by identity matrix returns the original matrix. This operation verifies structural
consistency and dimensionality.

1.4.4 Remove T3 (Maturation Time) and Recalculate

ParentTraits_T1T2 <- ParentTraits[, 1:2]
ParentTraits_T1T2

17

Drought_resistance Yield

P1 7 5
P2 6 8
P3 5 6

HybridTraits_T1T2 <- HybridWeights Y*J ParentTraits_T1T2
HybridTraits_T1T2

Drought_resistance Yield
Weight 6.3 6.1

Interpretation
Drought_ resistance = (0.5 x 7) + (0.3 x 6) + (0.2 x 5) = 6.3
Yield = (0.5 x 5) + (0.3 x 8) + (0.2 x 6) = 6.1

Removing a trait (T3) changes the trait profile. Hybrid selection may now favor traits that
remain.

1.4.5 Heatmap of ParentTraits

heatmap (

ParentTraits,

Rowv = NA,

Colv = NA,

scale = "none",

col = heat.colors(256),

main = "Heatmap of Parent Traits"
)

18

Heatmap of Parent Traits

BERE
c D S
§ > =

1.4.6 Bar Plot of Hybrid Traits

barplot(
HybridTraits,
beside = TRUE,
names.arg = colnames(ParentTraits),
col = c("#66c2ab", "#fc8d62", "#8dalOcb"),
main = "Hybrid Trait Profile",
ylab = "Trait Value"

19

Hybrid Trait Profile

Trait Value
0 1 2 3 45 6
|

Drought_resistance Yield Maturation_time

1.4.7 Interpretation Questions

e How does the weighting of parents affect the hybrid’s performance?

Stronger weights mean more genetic contribution. Traits from highly weighted parents
dominate the hybrid profile.

e What does the identity matrix represent here?

It represents a neutral transformation. It confirms data integrity when used in matrix
multiplication.

o If you used equal weights (for each), how would the hybrid traits change?

Traits would reflect an even mix, potentially leading to balanced but less specialized
performance.

e What real-world limitations does this simplified model ignore?

i. Non-additive genetic effects (dominance, epistasis)
ii. Environmental interactions
iii. Trait heritability and correlations

iv. Breeding feasibility and cost

20

1.5 Task 5: Managing Matrices and Weight Vectors Using Lists in R

Now that we’ve explored trait-based decisions using matrices, it’s time to organize our work
using R’s list structure. Lists help bundle related objects like matrices and weight vectors,
keeping the analysis modular and scalable.

1.5.1 Create a Master List

Assuming previous matrices and weights are already defined:

Making a MasterList

bioList = list(
ProteinConc = list(matrix = ProteinMatrix, weights = WeightVector),
ProteinMap = list(matrix = GeneExpression, weights = TranslationMatrix),
Animal = list(matrix = BullEBVs, weights = EconomicWeights),
Plant = list(matrix = ParentTraits, weights = HybridWeights)

print (bioList)

$ProteinConc
$ProteinConc$matrix
ProteinX ProteinY ProteinZ

Samplel 5 3 2
Sample2 7 6 4
$ProteinConc$weights

Weight

ProteinX 0.5
ProteinY 1.0
ProteinZ 1.5

$ProteinMap
$ProteinMap$matrix

GeneA GeneB GeneC
Samplel 10 8 5
Sample2 15 12 10

$ProteinMap$weights
protA protB protC

21

GeneA 1.5 0.0 0.0
GeneB 0.0 1.2 0.0
GeneC 0.0 0.0 1.8
$Animal
$Animal$matrix
Milk_yield Growth_rate Fertility
Bullil 400 1.2 0.8
Bull2 500 1.5 0.6
$Animal$weights
Weight
Milk_yield 2e-03
Growth_rate 5e+01
Fertility le+02
$Plant
$Plant$matrix
Drought_resistance Yield Maturation_time
P1 7 5 3
P2 6 8 4
P3 5 6 6
$Plant$weights
Drought_resistance Yield Maturation_time
Weight 0.5 0.3 0.2

1.5.2 List the Structure

names (bioList) # Top-level list names
[1] "ProteinConc" "ProteinMap" "Animal" "Plant"
lengths(biolist) # Number of components in each sublist
ProteinConc ProteinMap Animal Plant
2 2 2 2

22

Interpretation

Each top-level entry (e.g., ProteinConc, Plant) contains two components:

o A matrix (e.g., ProteinMatrix)
e A corresponding weight vector or matrix

1.5.3 Indexing Elements from Lists

Access the trait matrix for Plant
bioList$Plant[[1]]

Drought_resistance Yield Maturation_time

P1 7 5 3
P2 6 8 4
P3 5 6 6
#or
bioList$Plant$matrix

Drought_resistance Yield Maturation_time

P1 7 5 3
P2 6 8 4
P3 5 6 6

Access the weight vector for ProteinConc
bioList$ProteinConc[[2]]

Weight
ProteinX 0.5
ProteinY 1.0
ProteinZ 1.5

#or
bioList$ProteinConc$weights

23

Weight
ProteinX 0.5
ProteinY 1.0
ProteinZ 1.5

Interpretation

Use double brackets [[1] to extract unnamed list elements by position. But we named our
list, so they are easily extractable using the $ notation.

1.5.4 Perform Weighted Calculations

Protein concentration score
bioList$ProteinConcdmatrix %*), bioList$ProteinConc$weights

Weight
Samplel 8.5
Sample2 15.5

Gene - Protein contribution
bioList$ProteinMap$matrix %+*J, bioList$ProteinMap$weights

protA protB protC
Samplel 15.0 9.6 9
Sample2 22.5 14.4 18

Bull economic value
bioList$Animal$matrix %*), bioList$Animal$weights

Weight
Bulll 140.8
Bull2 136.0

Hybrid trait value
bioList$Plant$weights %*), bioList$Plant$matrix

Drought_resistance Yield Maturation_time
Weight 6.3 6.1 3.9

24

1.5.5 Subset and Recalculate

Remove last trait from ParentTraits
ParentSubset <- biolList$Plant$matrix[, 1:2]
NewWeights <- matrix(c(0.6, 0.4), nrow = 2)

Recalculated hybrid score
SubsetHybridScore <- ParentSubset 7%}, NewWeights
SubsetHybridScore

[,1]
P1 6.2
P2 6.8
P3 5.4

Interpretation

Dropping a trait and reweighting highlights its influence in trait aggregation and selection.

1.5.6 Visualization Tasks

1.5.6.1 Heatmap: Gene Expression

heatmap (
bioList$ProteinMap$matrix,
scale = "none",
col = heat.colors(256),
main = "Gene Expression Heatmap",
xlab = "Proteins",
ylab = "Genes"

25

Gene Expression Heatmap

o

1.5.6.2 Bar Plots

1.5.6.2.1 Hybrid traits

barplot(
bioList$Plant$weights %+, bioList$Plant$matrix,
beside = TRUE,
main = "Hybrid Trait Contributions",
col = "#66¢c2ab",
ylab = "Score"

26

Hybrid Trait Contributions

Score
01 2 3 45 6
|

Drought_resistance Yield Maturation_time

1.5.6.2.2 Bull EBV (Economic Breeding Values)

barplot (
bioList$Animal$matrix %+*), bioList$Animal$weights,
beside = TRUE,
main = "Bull EBVs (Economic Values)",
col = "#fc8d62",
ylab = "Score"

Bull EBVs (Economic Values)

o
N_
i

v o _
5 ©
o]

%)

o _|
<
o -

Weight

27

1.5.7 Interpretation Questions

e Why use a list structure?
Keeps each dataset and its weights together. Facilitates automated workflows and reuse.
o What’s tricky about [[]] access?

You must remember the order ([[1]] = matrix, [[2]] = weights). No names means you
can’t use $matrix, only positional access.

Loop across all list entries

Weighted scores for all entries lapply(bioList, function(x) x[[2]] %*% x[[1]1]1)
e How does this help in large-scale pipelines?

You can use this format with lapply (), purrr: :map(), or in targets pipelines for reproducibil-
ity and modular processing.

1.6 Homework solutions: Factors, Subsetting, and Biological Insight

1. Character vs Factor A character vector simply holds string values, but a factor is a
categorical variable with fixed levels, used especially in modeling.
For mutation_status, a factor ensures consistent categories (e.g., "Yes" or "No") and
helps control level order and statistical reference groups.

2. Factor Levels

species <- c("Lactobacillus", "Bacteroides", "Escherichia", "Bacteroides", "Lactobacillus"

species_factor <- factor(species, levels = c("Bacteroides", "Escherichia", "Lactobacillus"

levels(species_factor)

[1] "Bacteroides" "Escherichia" "Lactobacillus"

Because we defined the level order explicitly, R maintains that order regardless of data input.

3. Ordered Factor Comparison

disease_severity <- factor(c("Mild", "Severe", "Moderate"), levels = c("Mild", "Moderate",
disease_severity[1] < disease_severity[2]

[1] TRUE

28

TRUE
“Mild” is less severe than “Severe” based on the defined order.

4. Proportion Extraction

prop <- prop.table(table(species_factor))
prop["Escherichia"]

Escherichia
0.2

prop$Escherichia won’t work — named numeric vectors require bracket-based access.

5. Subsetting by Conditions

gene_df <- data.frame(

gene_id = c("BRCA1", "TP53", "MYC", "EGFR", "GAPDH"),

expression = ¢(8.2, 6.1, 9.5, 7.0, 10.0),

mutation = factor(c("Yes", "No", "Yes", "No", "No")),

pathway = c("DNA Repair", "Apoptosis", "Cell Cycle", "Signaling", "Metabolism")
)
rownames (gene_df) <- gene_df$gene_id #name the rows by the gene IDs
gene_df <- gene_df[, -1] #remove the first column which is not needed anymore
#gene_df
gene_df [gene_df$expression > 7 & gene_df$mutation == "No",]

expression mutation pathway
GAPDH 10 No Metabolism

Returns genes with high expression (>7) and no mutation — potentially highly active
but wild-type genes.

6. Group-wise Expression Summary

The given vectors are:

Samples <- C(IIWTII, “KD", "WT", IIKOH, HWT")
expression <- c(5.2, 8.1, 4.3, 9.0, 5.7)

The solution would be:

29

group_factor <- factor(samples)

Mean expression
tapply (expression, group_factor, mean) ## KO: 8.55, WI: 5.07

KO WT
8.550000 5.066667

Plot
barplot (tapply(expression, group_factor, mean),
col = c("skyblue", "salmon"),

ylab = "Mean Expression",
main = "Group-wise Expression")
Group—-wise Expression
w —

Mean Expression
4
|

KO WT

7. Gene Subsetting

gene_df [gene_df$expression > 8 &
gene_df$pathway %inj), c("Cell Cycle", "Signaling"),]

expression mutation pathway
MYC 9.5 Yes Cell Cycle

It filters for genes highly expressed and involved in key biological pathways.

8. Disease Stage Visualization

30

stages <- c("Stage I", "Stage III", "Stage II", "Stage IV", "Stage I")
disease_stage <- factor(stages,
levels = c("Stage I", "Stage II", "Stage III", "Stage IV"),
ordered = TRUE)

barplot(table(disease_stage),
col = "lightgreen",
main = "Patient Count by Disease Stage",
ylab = "Count")

Patient Count by Disease Stage

Count
00 05 10 15 20

Stage | Stage Il Stage Il Stage IV

Let’s do the severity order check:

Comparison
disease_stage[2] > disease_stage[1] # TRUE

[1] TRUE

So, “Stage III” is more sever than “Stage I”.

9. Oncogene Subsetting and Releveling

Define a small gene dataset
gene_data <- data.frame(
gene = c("TP53", "BRCA1", "MYC", "GAPDH", "EGFR"),
expression = c(9.1, 7.3, 10.5, 5.2, 8.6),
type = factor(c("Tumor Suppressor", "Oncogene", "Oncogene", "Housekeeping", "Oncogene"))

31

Subset: Oncogene rows with expression > 8
gene_datal[gene_data$type == "Oncogene" & gene_data$expression > 8,]

gene expression type
3 MYC 10.5 Oncogene
5 EGFR 8.6 Oncogene

Let’s relevel now, “Housekeeping” is the reference:

Relevel: make "Housekeeping" the reference level
gene_data$type <- relevel(gene_data$type, ref = "Housekeeping")

Check the new levels
levels(gene_data$type)

[1] "Housekeeping" "Oncogene" "Tumor Suppressor"

But the “Housekeeping” was already a reference by default (using alphabetic ordering by R).
Making something else the reference would make more sense. Our code above work, but
nothing new is done.

10. Simulated Expression by Tissue

set.seed(42)

gene_expr <- rnorm(45, mean = 8, sd = 2)

tissue <- rep(c("brain", "liver", "kidney"), each = 15)

tissue_factor <- factor(tissue, levels = c("liver", "brain", "kidney"))

boxplot(gene_expr ~ tissue_factor,
col = c("orange", "skyblue", "lightgreen"),
main = "Expression by Tissue",
ylab = "Expression Level")

32

Expression by Tissue

< : =
g S : ——
c
o ®©
n |
7 .
e O — . | :
o | E— 1
x 1 1
LIJ ﬂ- -] 1 1
[[[
liver brain kidney

tissue_factor

Let’s calculate variability per tissue type now:

Variability
tapply(gene_expr, tissue_factor, sd)

liver brain kidney
2.713940 2.050487 1.993668

Returns standard deviation per tissue group

1.7 Homework Solution tidyverse

Load necessary package
library(ggplot2)

Use the built-in iris dataset
data(iris)

Create the plot

ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = Species)) +
geom_point(size = 2) + # scatter plot points
geom_smooth(method = "lm", se = FALSE) + # linear regression lines
labs(

33

title = "Relationship between Petal Length and Width by Species",
x = "Petal Length (cm)",
y = "Petal Width (cm)",
color = "Iris Species"
)+

theme_minimal() # apply a clean minimal theme

Relationship between Petal Length and Width by Species

2.5 o 00
[J [
e 000 []
(L)
[]

2.0 { 2]
E Iris Species
£ 1 -0~ setosa
S
= == versicolor
_g 1.0 =0= virginica
o

®
0.5 o
(X __XJ
-
o
0.0
2 4 6
Petal Length (cm)
library(ggplot2)

ggplot(iris, aes(x = Petal.Length, y = Petal.Width)) +
geom_point(aes(color = Species), size = 2) + # color points by Species

geom_smooth(method = "lm", se = FALSE, color = "black") + # single regression line
labs(
title = "Overall Regression: Petal Length vs Width (Iris Dataset)",

x = "Petal Length (cm)",

y = "Petal Width (cm)",

color = "Iris Species"
)+

theme_minimal ()

34

Petal Width (cm)

2.5

2.0

15

1.0

0.5

0.0

Overall Regression: Petal Length vs Width (Iris Dataset)

Iris Species
® setosa
® versicolor

® virginica

2 4 6
Petal Length (cm)

35

	L3: Matrices and Lists
	Task 1: Protein Quantification in Biological Samples
	1. Matrices
	2. Making transpose of ProteinMatrix
	3. Identity Matrix
	4.1. Total Protein per Sample
	4.2. Total Protein per Protein Type
	4.3. Heatmap of Protein Concentrations
	🧠 Interpretation

	Task 2: Gene-to-Protein Translation
	Protein Output
	2. Transpose
	3. Identity matrix and multipliccation
	4. Sub-matrix:
	Visualization tasks:
	🧠 Interpretation

	Task 3: Animal Breeding – Bull Ranking by Economic Traits
	Define Data
	Compute Total Economic Value
	Multiply with Identity Matrix
	Remove Milk Yield and Recalculate Total Value
	Bar Plot: Total Economic Value
	Heatmap of EBVs
	🧠 Interpretation Questions

	Task 4: Plant Breeding – Trait Contributions from Parental Lines
	Define Data
	Compute HybridTraits Vector
	Multiply with Identity Matrix
	Remove T3 (Maturation Time) and Recalculate
	Heatmap of ParentTraits
	Bar Plot of Hybrid Traits
	🧠 Interpretation Questions

	Task 5: Managing Matrices and Weight Vectors Using Lists in R
	Create a Master List
	List the Structure
	Indexing Elements from Lists
	Perform Weighted Calculations
	Subset and Recalculate
	Visualization Tasks
	🧠 Interpretation Questions

	🧩 Homework solutions: Factors, Subsetting, and Biological Insight
	🧩 Homework Solution tidyverse

