Basic R

Md Rasheduzzaman
2025-05-15

Data types, variables, vectors, data frame, functions

Table of contents

1 L2: Data Representation

1.1 Using Rasa Calculator
1.2 Variables
1.2.1 Integer and Modulus division again
1.3 Rounding L
1.4 Logical Operations
1.5 Help and Documentation
1.6 Working with Vectors
1.6.1 Vector Operations
1.7 Data Frame
1.7.1 Gene Expression Table
1.8 Homeworks
1.8.1 Deadline.

L3: Data Transformation

2.1 Getting Started
2.1.1 Imstallation of R Markdown
2.1.2 Basic Setup for Today’s Session
2.1.3 Buildingon Last HW: oo
2.1.4 Preamble on random variables (RV):
2.1.5 Basic Stuffs: Atomic Vector
2.1.6 Basic Stuffs: Matrices
2.1.7 Basic Stuffs: List

2.2 Homeworks: Matrix and List Operations
2.2.1 Protein Quantification in Biological Samples
2.2.2 Tasks e

© 00 O Ut i W W

2.3

2.4

2.5
2.6

2.7

2.8
2.9

2.10

2.2.3 Interpretation Questionso 39

2.24 Gene-to-Protein Translation 39
2.2.5 Tasks o L 40
2.2.6 Visualization Tasks, 40
2.2.7 Interpretation Questions 41
2.2.8 Animal Breeding — Economic Ranking of Bulls by Traits 41
2.2.9 Tasks e 42
2.2.10 Visualization Tasks o 42
2.2.11 Interpretation Questions L. 42
2.2.12 Plant Breeding — Trait Contributions from Parental Lines 43
2.2.13 Tasks. e e 43
2.2.14 Visualization Tasks Lo 44
2.2.15 Interpretation Questions 44
2.2.16 Managing Matrices and Weight Vectors Using Listsin R 45
2.2.17 Step 1: Create a master list 45
2218 Tasks. e 45
2.2.19 Visualization Tasks 46
2.2.20 Interpretation Questions 46
Factor Variables L 46
2.3.1 Creating Factors L 47
2.3.2 Factor Operations 48
Subsetting Data 51
241 Vectors oo 51
2.4.2 Data Frames e 52
2.4.3 Row Names in Data Frames 55

Homeworks: Factors, Subsetting, and Biological Insight 57
Conditionals e 59
2.6.1 idif-elsestatement oL 99
2.6.2 ifelse statement for vectors 60
2.6.3 forloop 63
2.6.4 whileloop e 64
2.6.5 mextandbreak. 65
Writing Functions in R Lo 65
2.7.1 Flag gene expressiono oo 66
2.7.2 Function with multiple arguments 66
273 Returnalist 67

Homeworks: Control Structures and Functions 67
Handling Missing/Wrong Values 69
2.9.1 Identifying Issues 69
2.9.2 FixingData e 71
Data Transformation L L Lo 72
2.10.1 Introduction to Outliers 72
2.10.2 Identifying Outliers oo 72

2.10.3 Transforming Vectors 73

2.10.4 Logical Expressionso 76
2.10.5 Logical Operators 7
2.10.6 Logical Functions 7
2.10.7 Practical Session 78
2.11 Summary of the Lesson L o 78
2.12 Homework L e 79

1 L2: Data Representation

1.1 Using R as a Calculator

Let’s do some basic calculation.

5+3

[1] 8

3+2

[1] 5

3-2

(1] 1

3%2

[1] 6

3/2 #normal division
[1] 1.5

7 %/%h 2 #integer division, only the quotient

(1] 3

5 %% 3 #modulus division, the remainder

[1] 2

(10-5)*(2+4) #use of parentheses

(1] 30

10-5%2+4 #Noticed BODMAS?

(1] 4

(10-5)*(2+4) #Noticed BODMAS

(1] 30

7/(1+3); 7/1+3 #multi-line codes, separated with semi-colon

[1] 1.75

[1] 10

1+2; log(1l); 1/10 #more multi-line codes

(1] 3

(11 O

[1] 0.1

1.2 Variables

Variables are variable. We have freedom to name them as we wish. But make any variable
name meaningful and identifiable.

<- 5 #assign value 5 to a
= 10

p TP

(1] 5

[1] 10

a <-a+ 10

b=D>b+ 15
a
[1] 15

a”2 #a squared

[1] 225

ax*2 #a squared again, in a different way.

[1] 225

a3 #a qubed

[1] 3375

1 Note

<- and = are used to assign values. It is not mathematical equality. b <- b + 15 might
make better sense than b = b + 15.

1.2.1 Integer and Modulus division again

Do some more practice.

7/3

[1] 2.333333
Th/%3

(11 2

Th%h3

(1] 1

1.3 Rounding

Some important functions we apply on numerical values

x <- 9/4
floor(x)

(1] 2

ceiling(x)

[1] 3

round (x)

(1] 2

round(x, 2) #round till 2 decimal points

[1] 2.25

1.4 Logical Operations

Get to know TRUE/FALSE in R.

a=>5
b=7
c 10
d =3
a == b #is a equal to b? Ans: No/FALSE

[1] FALSE

a != b #is a not equal to b? Ans: Yes/TRUE

[1] TRUE

a > b #is a greater than b? Ans: FALSE

[1] FALSE

a < b #is a less than b7 Ans: TRUE

[1] TRUE

a >= b #is a greater than or equal to b7 Ans: FALSE

[1] FALSE

a <= b #is a less than or equal to b? Ans: TRUE

[1] TRUE

a<b | d>Db #is a less than b OR d greater than b?

[1] TRUE

#It's answer will be TRUE OR FALSE --> So, TRUE
a<bé&c>d #is a less than b AND a greater than b? It's answer will be TRUE AND TRUE --

[1] TRUE
a<bé&d>c #is a less than b AND a greater than b? It's answer will be TRUE AND FALSE -

[1] FALSE

1.5 Help and Documentation

But how to know more about a function? The package/library developer have written helpful

documentation for us.

?log

example (log)

log> log(exp(3))

[1] 3

log> loglO(1e7) # =7

(11 7

log> x <- 107-(1+2%1:9)

log> cbind(deparse.level=2, # to get nice column names

log+ x, log(1+x), loglp(x), exp(x)-1, expml(x))

x log(l + x) loglip(x) exp(x) -1 expml (x)
[1,] 1e-03 9.995003e-04 9.995003e-04 1.000500e-03 1.000500e-03
[2,] 1e-05 9.999950e-06 9.999950e-06 1.000005e-05 1.000005e-05
[3,] 1e-07 1.000000e-07 1.000000e-07 1.000000e-07 1.000000e-07
[4,] 1e-09 1.000000e-09 1.000000e-09 1.000000e-09 1.000000e-09
[5,] 1e-11 1.000000e-11 1.000000e-11 1.000000e-11 1.000000e-11
[6,] 1e-13 9.992007e-14 1.000000e-13 9.992007e-14 1.000000e-13
[7,] 1le-15 1.110223e-15 1.000000e-15 1.110223e-15 1.000000e-15
[8,] 1e-17 0.000000e+00 1.000000e-17 0.000000e+00 1.000000e-17
[9,] 1e-19 0.000000e+00 1.000000e-19 0.000000e+00 1.000000e-19

?1log()

1.6 Working with Vectors
What is a vector? See the example and think.

x <- c(1, 2, 3, 4, 5) #c means concatenate

z <- 1:5 #consecutively, from 1 through 5. A short-hand notation using :
y <- c(3, 6, 9, 12, 15, 20)

length(x)

(11 5

mode (x)

(1] "numeric"

is(x)

[1] "numeric" "vector"

x[1] #first entry in vector y

(1] 1

x[2:5] #2nd to 5th entries in vector y

[1] 23 4 5

DNA <- c("A", "T", "G", "C") #character vector. Notice the quotation marks.
dec <- ¢(10.0, 20.5, 30, 60, 80.9, 90, 100.7, 50, 40, 45, 48, 56, 55) #vector of floats. A
dec[c(1:3, 7:1length(dec))] #1st to 3rd and then 7th till the end of vector “dec”. Output a

(1] 10.0 20.5 30.0 100.7 50.0 40.0 45.0 48.0 56.0 55.0

1.6.1 Vector Operations

Notice the element-wise or index-wise mathematical operations (+, /, log2(), round (), etc.).
Noticed?

x <= 1:10

y <= 2:11

#x and y are of same length
Xty

(1] 3 5 7 9 11 13 15 17 19 21

y/ x

[1] 2.000000 1.500000 1.333333 1.250000 1.200000 1.166667 1.142857 1.125000
[9] 1.111111 1.100000

log2(x)

[1] 0.000000 1.000000 1.584963 2.000000 2.321928 2.584963 2.807355 3.000000
[9] 3.169925 3.321928

round(log2(x), 1) #log2 of all the values of “x°, 1 digit after decimal to round.

(1] 0.0 1.0 1.6 2.0 2.3 2.6 2.8 3.0 3.2 3.3

round(log2(x), 3) #same logic

[1] 0.000 1.000 1.585 2.000 2.322 2.585 2.807 3.000 3.170 3.322

1 Note

Nested functions work inside out. Think again about round(log2(x), 1) and you will
see it. At first, it is making log2 of vector x and then it is rounding the log2 values to
one digit after decimal. Got it?

10

1.7 Data Frame
Now, it’s time to use vectors to make data sets.....

names <- c("Mina", "Raju", "Mithu", "Lali')

gender <- c("Female", "Male", "Female", "Female")

age <- c(15, 12, 2, 3)

is_human <- c(TRUE, TRUE, FALSE, FALSE)

cartoon <- data.frame(names, gender, age, is_human)
write.table(cartoon, "cartoon.csv", sep = ",", col.names = TRUE)

df <- read.table("cartoon.csv", header = TRUE, sep = ",")
dim(df) # dim” means dimension. so, rows * columns

[1] 4 4

str(df) #structure of ~df"

'data.frame': 4 obs. of 4 variables:

$ names : chr "Mina" "Raju" "Mithu" "Lali"

$ gender : chr "Female" "Male" "Female" "Female"
$ age : int 15 12 2 3

$ is_human: logi TRUE TRUE FALSE FALSE

We made the vectors first, and the used them to make the cartton data frame or table. We
learned how to export the data frame using write.table function. Also, we learned to import
or read back the table using read.table function. What are the sep, col.names, header
arguments there? Why do we need them? Think. Try thinking of different properties of a
data set.

1.7.1 Gene Expression Table

11

gene_expr <- data.frame(
genes = c("TP53", "BRCA1", "MYC", "EGFR", "GAPDH", "CDC2"),

samplel = c(8.2, 6.1, 9.5, 7.0, 10.0, 12),
Sample2 = c(5.9, 3.9, 7.2, 4.8, 7.9, 9),
Sampled = c(8.25, 6.15, 9.6, 7.1, 10.1, 11.9),

pathways = c("Apoptosis", "DNA Repair", "Cell Cycle", "Signaling", "Housekeeping", "Cell
)

write.table(gene_expr, '"gene_expr.csv", sep = ",", col.names = TRUE)
gene_set <- read.table("gene_expr.csv", header = TRUE, sep = ",")
1 Note

Here, we directly used the vectors as different columns while making the data frame. Did
you notice that? Also, the syntax is different here. We can’t assign the vectors with the
assignment operator (means we can’t use <- sign. We have to use the = sign). Try using
the <- sign. Did you notice the column names?

1.8 Homeworks

1. Compute the difference between this year (2025) and the year you started at the uni-
versity and divide this by the difference between this year and the year you were born.
Multiply this with 100 to get the percentage of your life you have spent at the university.

2. Make different kinds of variables and vectors with the data types we learned together.
3. What are the properties of a data frame?

Hint: Open an excel/csv/txt file you have and try to “generalize”.

4. Can you make logical questions on the 2 small data sets we used? Try. It will help you
understanding the logical operations we tried on variables. Now we are going to apply
them on vectors (columns) on the data sets. For example, in the cartoon data set, we
can ask/try to subset the data set filtering for females only, or for both females and age
greater than 2 years.

5. If you are writing or practicing coding in R, write comment for each line on what it is
doing. It will help to chunk it better into your brain.

6. Push the script and/or your answers to the questions (with your solutions) to one of
your GitHub repo (and send me the repo link).

12

1.8.1 Deadline

Friday, 10pm BD Time.

2 L3: Data Transformation

Firstly, how did you solve the problems?

Give me your personal Mindmap. Please, send it in the chat!

2.1 Getting Started
2.1.1 Installation of R Markdown

We will use rmarkdown to have the flexibility of writing codes like the one you are reading now.
If you haven’t installed the rmarkdown package yet, you can do so with:

Install rmarkdown package

#install.packages ("rmarkdown")

library(rmarkdown)

Other useful packages we might use
#install.packages("dplyr") # Data manipulation
library(dplyr)

#install.packages("readr") # Reading CSV files
library(readr)

Remove the hash sign before the install.packages("rmarkdown"), install.packages("dplyr"),
install.packages("readr") if the library loading fails. That means the package is not
there to be loaded. We need to download/install first.

1 Note

Do you remember this book by Hadley Wickham?. Try to follow it to get the hold on
the basic R syntax and lexicon.

13

https://r4ds.had.co.nz

2.1.2 Basic Setup for Today’s Session

Clear environment
rm(list = 1s())

Check working directory
getwd ()

Set working directory if needed
setwd("path/to/your/directory") # Uncomment and modify as needed

2.1.3 Building on Last HW:

cartoon <- data.frame(
names = c("Mina", "Raju", "Mithu", "Lali"),
gender = c("Female", "Male", "Female", "Female"),
age = c(15, 12, 2, 3),
is_human = c(TRUE, TRUE, FALSE, FALSE)

)
cartoon

names gender age is_human
1 Mina Female 15 TRUE
2 Raju Male 12 TRUE

3 Mithu Female 2 FALSE
4 Lali Female 3 FALSE

dim(cartoon)

[1] 4 4

str(cartoon)

'data.frame': 4 obs. of 4 variables:

$ names : chr "Mina" "Raju" "Mithu" "Lali"

$ gender : chr "Female" "Male" "Female" "Female"
$ age :num 15 12 2 3

$ is_human: logi TRUE TRUE FALSE FALSE

14

length(cartoon$names)

[1] 4

##subseting
cartoon[1:2, 2:3] #row 1-2, column 2-3

gender age
1 Female 15
2 Male 12

cartoon[c(1, 3), c(1:3)] #row 1-3, column 1-3

names gender age
1 Mina Female 15
3 Mithu Female 2

#condition for selecting only male characters
male_df <- cartoon[cartoon$gender == "Male",]
male_df

names gender age is_human
2 Raju Male 12 TRUE

#condition for selecting female characters with age more than 2 years
female_age <- cartoon[cartoon$gender == "Female" & cartoon$age > 2,]
female_age

names gender age is_human
1 Mina Female 15 TRUE
4 Lali Female 3 FALSE

sum(female_age$age) #sum of age of female_age dataset

[1] 18

sd(cartoon$age) #standard deviation of age of main cartoon dataset

15

[1] 6.480741

mean(cartoon$age) #mean of age of main cartoon dataset

(1] 8

Check your colleague’s repo for the Q3.
Logical Operators

Operator Meaning Example

== Equal to X ==

1= Not equal x I=

< Less than x <5

> Greater than x>5

<= Less or equal x <=5

>= Greater or equal x >= 5

! Not I(x < B)

I OR x <5] x>10
& AND x>5 & x <10

2.1.4 Preamble on random variables (RV):

RV is so fundamental of an idea to interpret and do better in any kind of data analyses. But
what is it? Let’s imagine this scenario first. You got 30 mice to do an experiment to check anti-
diabetic effect of a plant extract. You randomly assigned them into 3 groups. control, treatl
(meaning insulin receivers), and treat2 (meaning your plant extract receivers). Then you kept
testing and measuring. You have mean glucose level of every mouse and show whether the
mean value of treatl is equal to treat2 or not. So, are you done? Not really. Be fastidious
about the mice. What if you got some other 30 mice? Are they the same? Will their mean
glucose level be the same? No, right. We would end up with different mean value. We call
this type of quantities RV. Mean, Standard deviation, median, variance, etc. all are RVs. Do
you see the logic? That’s why we put this constraint and look for p-value, confidence interval
(or CI), etc. by (null) hypothesis testing and sample distribution analyses. We will get into
these stuffs later. But let’s check what I meant. Also ponder about sample vs population.

Let’s download the data first.

Download small example dataset
download.file("https://raw.githubusercontent.com/genomicsclass/dagdata/master/inst/extdata

16

https://github.com/atiyashehreen/hw_repo3/blob/main/propertiesofdataframe.txt

destfile = "mice.csv"

Load data
mice <- read.csv("mice.csv")

Let’s check now.

control <- sample(mice$Bodyweight,12)
mean(control)

[1] 22.62583

controll <- sample(mice$Bodyweight,12)
mean (controll)

(1] 24.12917

control?2 <- sample(mice$Bodyweight,12)
mean(control2)

[1] 23.7275

Do you see the difference in the mean value now?

2.1.5 Basic Stuffs: Atomic Vector

atomic_vec <- c(Human=0.5, Mouse=0.33)

It is fast, but has limited access methods.

How to access elements here?

atomic_vec["Human"]

Human
0.5

atomic_vec["Mouse"]

17

Mouse
0.33

2.1.6 Basic Stuffs: Matrices

Matrices are essential for biologists working with expression data, distance matrices, and other
numerical data.

Create a gene expression matrix: rows=genes, columns=samples
expr_matrix <- matrix(
c(12.3, 8.7, 15.2, 6.8,
9.5, 11.2, 13.7, 7.4,
5.6, 6.8, 7.9, 6.5),
nrow = 3, ncol = 4, byrow = TRUE

Add dimension names

rownames (expr_matrix) <- c("BRCA1", "TP53", "GAPDH")

colnames (expr_matrix) <- c("Control_1", "Control_ 2", "Treatment_1", "Treatment_2")
expr_matrix

Control_1 Control_2 Treatment_1 Treatment_2

BRCA1 12.3 8.7 15.2 6.8
TP53 9.5 11.2 13.7 7.4
GAPDH 5.6 6.8 7.9 6.5

Matrix dimensions

dim(expr_matrix) # Returns rows and columns
[1] 3 4

nrow(expr_matrix) # Number of rows

[1] 3

ncol (expr_matrix) # Number of columns

[1] 4

18

Matrix subsetting
expr_matrix[2,] # One gene, all samples

Control_1 Control_2 Treatment_1 Treatment_2
9.5 11.2 13.7 7.4

expr_matrix[, 3:4] # All genes, treatment samples only

Treatment_1 Treatment 2

BRCA1 15.2 6.8
TP53 13.7 7.4
GAPDH 7.9 6.5

expr_matrix["TP53", c("Control_ 1", "Treatment_1")]

Control_1 Treatment_1
9.5 13.7

Matrix calculations (useful for bioinformatics)
Mean expression per gene

gene_means <- rowMeans (expr_matrix)

gene_means

BRCA1 TP53 GAPDH
10.75 10.45 6.70

Mean expression per sample
sample_means <- colMeans(expr_matrix)
sample_means

Control_1 Control_2 Treatment_1 Treatment_2
9.133333 8.900000 12.266667 6.900000

Calculate fold change (Treatment vs Control)
control_means <- rowMeans(expr_matrix[, 1:2])
treatment_means <- rowMeans(expr_matrix[, 3:4])
fold_change <- treatment_means / control_means
fold_change

19

Specific gene and samples

BRCA1 TP53 GAPDH
1.047619 1.019324 1.161290

Matrix visualization
Heatmap of expression data
heatmap (expr_matrix,

Colv = NA, # Don't cluster columns
scale = "row", # Scale by row (gene)
col = heat.colors(16),

main = "Gene Expression Heatmap")

Gene Expression Heatmap

BRCA1

TP53

GAPDH

—
@]
| —-—
)
—

2.1.6.1 More Matrix Practice:

(Q\|
—
c
)
(o

rol 2
1ent 1

#Create a simple Gene Expression matrix (RNA-seq style)

Gene_Expression <- matrix(c(
5.2, 3.1, 8.5, # Sample 1
6.0, 2.8, 7.9 # Sample 2

), nrow =

2, byrow = TRUE)

20

rownames (Gene_Expression) <- c("Sample_1", "Sample_2")
colnames (Gene_Expression) <- c("GeneA", "GeneB", "GeneC")

print("Gene Expression Matrix:")

[1] "Gene Expression Matrix:"

print (Gene_Expression)

GeneA GeneB GeneC
Sample_1 5.2 3.1 8.5
Sample_2 6.0 2.8 7.9

#1. Transpose: Genes become rows, Samples become columns

Gene_Expression_T <- t(Gene_Expression)
print("Transpose of Gene Expression Matrix:")

[1] "Transpose of Gene Expression Matrix:"

print (Gene_Expression_T)

Sample_1 Sample_2

GeneA 5.2 6.0
GeneB 3.1 2.8
GeneC 8.5 7.9

#2. Matrix multiplication
Suppose each gene has an associated "gene weight" (e.g., biological importance)

Gene_Weights <- matrix(c(0.8, 1.2, 1.0), nrow = 3, byrow = TRUE)
rownames (Gene_Weights) <- c("GeneA", "GeneB", "GeneC")

colnames (Gene_Weights) <- c("Weight")

Total_Weighted_Expression <- Gene_Expression %*J Gene_Weights
print("Total Weighted Expression per Sample:")

21

[1] "Total Weighted Expression per Sample:"

print(Total_Weighted_Expression)

Weight
Sample_1 16.38
Sample_2 16.06

3. Matrix addition
Hypothetically increase expression by 1 TPM everywhere (technical adjustment)

Adjusted_Expression <- Gene_Expression + 1
print ("Expression Matrix after adding 1 TPM:")

[1] "Expression Matrix after adding 1 TPM:"

print (Adjusted_Expression)

GeneA GeneB GeneC
Sample_1 6.2 4.1 9.5
Sample_2 7.0 3.8 8.9

4. Identity matrix

I <- diag(3)
rownames(I) <- c("GeneA", "GeneB", "GeneC")
colnames(I) <- c("GeneA", "GeneB", "GeneC")

print("Identity Matrix (for genes):")

[1] "Identity Matrix (for genes):"

print (I)

GeneA GeneB GeneC

Genel 1 0 0
GeneB 0 1 0
GeneC 0 0 1

22

Multiplying Gene Expression by Identity
Identity_Check <- Gene_Expression 7%*J, I
print("Gene Expression multiplied by Identity Matrix:")

[1] "Gene Expression multiplied by Identity Matrix:"

print (Identity_Check)

GeneA GeneB GeneC
Sample_1 5.2 3.1 8.5
Sample_2 6.0 2.8 7.9

5. Scalar multiplication
Suppose you want to simulate doubling expression values

Doubled_Expression <- 2 * Gene_Expression
print("Doubled Gene Expression:")

[1] "Doubled Gene Expression:"

print (Doubled_Expression)

GeneA GeneB GeneC
Sample_1 10.4 6.2 17.0
Sample_2 12.0 5.6 15.8

6. Summations

Total expression per sample
Total_Expression_Per_Sample <- rowSums(Gene_Expression)
print("Total Expression per Sample:")

[1] "Total Expression per Sample:"

print(Total_Expression_Per_Sample)

23

Sample_1 Sample_2
16.8 16.7

Total expression per gene
Total_Expression_Per_Gene <- colSums(Gene_Expression)
print ("Total Expression per Gene:")

[1] "Total Expression per Gene:"
print(Total_Expression_Per_Gene)

GeneA GeneB GeneC
11.2 5.9 16.4

7. Simple plots

Barplot: Total expression per sample
barplot(Total_Expression_Per_Sample, main="Total Expression per Sample", ylab="TPM", col=c

Total Expression per Sample

15

TPM
10

Sample_1 Sample_2

Barplot: Total expression per gene
barplot(Total_Expression_Per_Gene, main="Total Expression per Gene", ylab="TPM", col=c("1li

24

Total Expression per Gene

15

TPM
10

GeneA GeneB GeneC

Heatmap: Expression matrix
heatmap (Gene_Expression, Rowv=NA, Colv=NA, col=heat.colors(256), scale="column", main="Gen

Gene Expression Heatmap

Sample_

Sample_

< m O
5 Q Q
- c c
B O @

Another Example: You have counts of cells in different organs for two animal species.

You also have a matrix with average cell sizes (micrometer, pm?) for each organ.

You can then multiply count X size to get total cell area for each species in each organ.

25

Create a matrix: Cell counts

Cell_Counts <- matrix(c(500, 600, 300, 400, 700, 800), nrow = 2, byrow = TRUE)
rownames (Cell_Counts) <- c("Mouse", "Rat")

colnames (Cell_Counts) <- c("Heart", "Liver", "Brain")

print("Cell Counts Matrix:")

[1] "Cell Counts Matrix:"

print(Cell_Counts)

Heart Liver Brain
Mouse 500 600 300
Rat 400 700 800

Create a matrix: Average cell size in pm?

Cell_Size <- matrix(c(50, 200, 150), nrow = 3, byrow = TRUE)
rownames (Cell_Size) <- c("Heart", "Liver", "Brain")
colnames(Cell_Size) <- c("Avg_Cell_Size")

print("Cell Size Matrix (pm?):")

[1] "Cell Size Matrix (pm?):"

print(Cell_Size)

Avg_Cell_Size

Heart 50
Liver 200
Brain 150

1. Transpose of Cell Counts
Cell Counts T <- t(Cell Counts)
print("Transpose of Cell Counts:")

[1] "Transpose of Cell Counts:"

26

print(Cell_Counts_T)

Mouse Rat
Heart 500 400
Liver 600 700
Brain 300 800

2. Matrix multiplication: Total cell area

(2x3) %x) (3x1) => (2x1)

Total_Cell_Area <- Cell_Counts %*% Cell_Size
colnames(Total Cell Area) <- "Cell area"
print("Total Cell Area (Counts x Size) (pm?):")

[1] "Total Cell Area (Counts x Size) (pm?):"

print(Total_Cell_Area)

Cell_area
Mouse 190000
Rat 280000

3. Matrix addition: Add 10 cells artificially to all counts (for example)
Added_Cells <- Cell_Counts + 10
print("Cell Counts after adding 10 artificial cells:")

[1] "Cell Counts after adding 10 artificial cells:"

print (Added_Cells)

Heart Liver Brain
Mouse 510 610 310
Rat 410 710 810

4. Identity matrix

I <- diag(3)
rownames(I) <- c("Heart", "Liver", "Brain")
colnames(I) <- c("Heart", "Liver", "Brain")

27

print("Identity Matrix:")

[1] "Identity Matrix:"

print(I)

Heart Liver Brain

Heart 1 0 0
Liver 0 1 0
Brain 0 0 1

5. Multiplying Cell Counts by Identity Matrix (no real change but shows dimension rules)
Check_Identity <- Cell_Counts %*J, I
print("Cell Counts multiplied by Identity Matrix:")

[1] "Cell Counts multiplied by Identity Matrix:"

print (Check_Identity)

Heart Liver Brain
Mouse 500 600 300
Rat 400 700 800

6. Scalar multiplication: double the counts (hypothetical growth)
Double_Cell_Counts <- 2 * Cell_Counts
print ("Doubled Cell Counts:")

[1] "Doubled Cell Counts:"

print (Double_Cell_Counts)

Heart Liver Brain
Mouse 1000 1200 600
Rat 800 1400 1600

28

Total number of cells per animal (row sums)
Total_Cells_Per_Species <- rowSums(Cell_Counts)
print("Total number of cells per species:")

[1] "Total number of cells per species:"

print(Total_Cells_Per_Species)

Mouse Rat
1400 1900

Total number of cells per organ (column sums)
Total_Cells_Per_Organ <- colSums(Cell_Counts)
print("Total number of cells per organ:")

[1] "Total number of cells per organ:"

print(Total_Cells_Per_Organ)

Heart Liver Brain
900 1300 1100

—--- Simple plots ——-

Bar plot of total cells per species
barplot(Total_Cells_Per_Species, main="Total Cell Counts per Species", ylab="Number of Cel

29

Total Cell Counts per Species

o 3 _
-
(]
OH
O
(@] |
-
(]
QO
= g -
Lo
=
o_

Mouse Rat

Bar plot of total cells per organ
barplot(Total_Cells_Per_Organ, main="Total Cell Counts per Organ", ylab="Number of Cells",

Total Cell Counts per Organ

o

o _

[q\}
QH
3 o |
Y4— o —
o [e0]
A —]
3

o
E Q
s <
=z]

o -

Heart Liver Brain

Heatmap of the original Cell Counts matrix
heatmap(Cell_Counts, Rowv=NA, Colv=NA, col=heat.colors(256), scale="column", main="Heatmaf

30

Heatmap of Cell Counts

)
| -
®
)
T

Liver
Brain

Rat

Mouse

Operation

Explanation

R Function/Example

Matrix Creation
Transpose
Matrix Multiplication

Matrix Addition
Identity Matrix
Scalar Multiplication
Row/Column
Summation

Plotting

Create gene expression matrix
Flip genes and samples
Calculate weighted sums

Adjust counts

Special neutral matrix
Simulate overall increase
Total per sample/gene

Visualize expression patterns

matrix()

t (Gene_Expression)
Gene_Expression %*%
Gene_Weights
Gene_Expression + 1
diag(3)

2 * Gene_Expression
rowSums (), colSums ()

barplot (), heatmap()

2.1.7 Basic Stuffs: List

Lists are the most flexible data structure in R - they can hold any combination of data types,
including other lists! This makes them essential for biological data analysis where we often

deal with mixed data types.

31

A list storing different types of genomic data
genomics_data <- 1list(
gene_names = c("TP53", "BRCA1", "MYC"), # Character vector
expression = matrix(c(1.2, 3.4, 5.6, 7.8, 9.1, 2.3), nrow=3),

is_cancer_gene = c(TRUE, TRUE, FALSE),
metadata = list(

lab = "CRG",
date = "2023-05-01"

Numeric matrix
Logical vector
Nested list!

)

How to Access Elements of a List?

Method 1: Double brackets [[]] for single element
genomics_data[[1]] # Returns gene_names vector

[1] "TP53" "BRCA1" "MYC"

Method 2: $ operator with names (when elements are named)
genomics_data$expression # Returns the matrix

[,1]1 [,2]
[1,] 1.2 7.8
[2,] 3.4 9.1
[3,] 5.6 2.3

Method 3: Single bracket [] returns a sublist

genomics_data[1:2] # Returns list with first two elements

$gene_names
(1] "TP53" "BRCA1" "MYC"

$expression
(.11 [,2]
[1,] 1.2 7.8
[2,] 3.4 9.1
[3,] 5.6 2.3

Key Difference from Vectors:

32

Compare to your prop.table() example:
atomic_vec["Human"] # Returns named numeric (vector)

Human
0.5

atomic_vec["Mouse"]

Mouse
0.33

genomics_datal[l] # Returns list containing the vector

$gene_names
[1] "TP53" "BRCA1" "MYC"

Why Biologists Need Lists?

1m(), prcomp() functions, RNAseq analysis packages produces list. So, we need to learn how
to handle lists.

See these examples:

A. Storing BLAST results

blast_hits <- list(
query_id = "GeneX",
hit_ids = c("NP_123", "NP_456"),
e values = c(le-50, 3e-12),
alignment = matrix(c("ATG...", "CTA..."), ncol=1))

B. Handling Mixed Data

patient_data <- list(
id = "P1001",
tests = data.frame(
test = c("WBC", "RBC"),
value = c(4.5, 5.1)
),
has_mutation = TRUE

33

Common List Operations

Add new element
genomics_data$sequencer <- "Illumina"

Remove element
genomics_data$is_cancer_gene <- NULL

Check structure (critical for complex lists)
str(genomics_data)

List of 4
$ gene_names: chr [1:3] "TP53" "BRCA1" "MYC"
$ expression: num [1:3, 1:2] 1.2 3.4 5.6 7.8 9.1 2.3
$ metadata :List of 2
..$ lab : chr "CRG"
..$ date: chr "2023-05-01"
$ sequencer : chr "Illumina"

By the way, how would you add more patients?

Add new patient
patient_data$P1002 <- list(
id = "P1002",
tests = data.frame(
test = c("WBC", "RBC", "Platelets"),
value = c(6.2, 4.8, 150)
),
has_mutation = FALSE
)
Access specific patient
patient_data$P1001$test

NULL

For Batch Processing;:

patients <- list(
list(
id = "P1001",
tests = data.frame(test = c("WBC", "RBC"), value = c(4.5, 5.1)),

34

has_mutation = TRUE

),
list(
id = "P1002",
tests = data.frame(test = c("WBC", "RBC", "Platelets"), value = c(6.2, 4.8, 150)),
has_mutation = FALSE
)
)
Access 2nd patient's WBC value
patients[[2]]$tests$value[patients[[2]]$tests$test == "WBC"]
[1] 6.2

Converting Between Structures

List = Vector
unlist(genomics_datal[1:3])

gene_namesl gene_names2 gene_names3 expressionl expression2

HTP53II llBRCAlll IIMYC" ll1 .2|| ll3.4||
expression3 expression4 expressionb = expression6 metadata.lab
115.6" 117.8" ll9.1|| Il2.3|| IICRGH
metadata.date
"2023-05-01"
Visualization

Base R plot from list data
barplot (unlist(genomics_datal[2]),
names.arg = genomics_data[[1]])

This code won’t work if you run. unlist(genomics_datal[2] creates a vector of length 6 from
our 3*2 matrix but genomics_data[[1]] has 3 things inside the gene_names vector. Debug

like this:

dim(genomics_data$expression) # e.g., 2 rows x 2 cols

[1] 3 2

35

length(genomics_data$gene_names) # e.g., 3 genes

[1] 3
A. Gene-Centric (Mean Expression)

barplot (rowMeans (genomics_data$expression),
names.arg = genomics_data$gene_names,
col = "steelblue",
ylab = "Mean Expression",
main = "Average Gene Expression")

Average Gene Expression

Mean Expression
01 2 3 45 6
|

TP53 BRCA1 MYC

B. Sample-Centric (All Measurements)

barplot (genomics_data$expression,
beside = TRUE,
names.arg = paste0("Sample_", 1:ncol(genomics_data$expression)),
legend.text = genomics_data$gene_names,
args.legend = list(x = "topright", bty = "n"),
col = c("blue", "red", "green"),
main = "Expression Across Samples")

36

Expression Across Samples

Sample_1 Sample_2

1 Note

This matches real-world scenarios:

RNA-seq: Rows=genes, cols=samples
rowMeans() = average expression per gene
beside=TRUE => compare samples within genes
Proteomics: Rows=proteins, cols=replicates
Same principles apply

Calculate stats
gene_means <- rowMeans(genomics_data$expression)
gene_sds <- apply(genomics_data$expression, 1, sd)

Plot with error bars
bp <- barplot(gene_means, ylim = c(0, max(gene_means + gene_sds)))
arrows(bp, gene_means - gene_sds, bp, gene_means + gene_sds,

angle = 90, code = 3)

37

Task: Create a list containing:

i) A character vector of 3 gene names

ii) A numeric matrix of expression values

iii) A logical vector indicating pathway membership

1v

)
)
)
) A nested list with lab metadata

2.2 Homeworks: Matrix and List Operations
2.2.1 Protein Quantification in Biological Samples

You are given the following protein concentration matrix:

. .15 3 2
ProteinMatrix = [7 6 4]

¢ Rows represent samples:

— Samplel
— Sample2

e Columns represent proteins:

— ProteinX
— ProteinY
— ProteinZ

You are also given a weight (importance) matrix for the proteins:

0.5
WeightVector = [1.0
1.5

38

2.2.2 Tasks

1. Make the matrices (with exact names) and multiply the ProteinMatrix by the Weight Vec-
tor.

That is:

ProteinMatrix x WeightVector

2. Transpose the ProteinMatrix and show what it looks like.

3. Create the Identity matrix of compatible size and show what happens when you multiply:

ProteinMatrix x I

4.Do the calculations (rowSums, colSums, etc.) and visualization (barplot, heatmap) as shown
in the class.

2.2.3 Interpretation Questions

e What does multiplying the protein levels by the weight vector mean biologically?

o What does the result tell you about total protein burden (or total protein impact) for
each sample?

e« What do the identity matrix represent in the context of protein interactions or measure-
ment biases?

e If you changed the weight of ProteinZ to 3.0, how would the result change?

2.2.4 Gene-to-Protein Translation

You are given the following matrix representing normalized gene expression levels (e.g.,

TPM):

GeneExpression = [5 12 10

1085}

¢ Rows = Samples:

— Samplel
— Sample2

e Columns = Genes:

— GeneA
— GeneB
— GeneC

39

Each gene translates into proteins with a certain efficiency. The efficiency of translation from
each gene to its corresponding protein is given by the following diagonal matrix:

1.5 0 0
TranslationMatrix= | 0 1.2 0
0 0 1.8

This means:

¢ GeneA — ProteinA with 1.5x efficiency
¢ GeneB — ProteinB with 1.2x efficiency

¢ GeneC — ProteinC with 1.8x efficiency

2.2.5 Tasks

1. Make the matrices and multiply GeneExpression x TranslationMatrix to compute the
resulting ProteinMatrix.

e Show the result step-by-step.

2. Transpose the GeneExpression matrix. What does this new matrix represent?
3. Create the Identity matrix I and multiply it with the TranslationMatrix. What happens?

4. Create a new matrix containing only the expression of GeneA and GeneB across both
samples. Call this submatrix A.

e Compute the inverse A ! using solve() function.
e Then verify:
AxAl=1

2.2.6 Visualization Tasks

5. Plot a MARplot-style scatter plot:

o x-axis: Gene expression values (GeneExpression matrix, flattened)
o y-axis: Corresponding Protein values (ProteinMatrix, flattened)
o Label each point as “Sample-Gene”

6. Generate a heatmap of the ProteinMatrix using R’s heatmap () function.

¢ Add meaningful row and column labels.
¢ Enable clustering by rows and columns.

40

2.2.7 Interpretation Questions

e« What does matrix multiplication represent biologically in this case?

o Why does the diagonal TranslationMatrix make sense biologically?

o What does it mean if Sample2 has higher protein levels even with similar gene expression?
e How does the MARplot help interpret translation efficiency?

e How does clustering in the heatmap reveal relationships between samples and proteins?

2.2.8 Animal Breeding — Economic Ranking of Bulls by Traits

You are evaluating two bulls for use in a dairy breeding program. Their Estimated Breeding
Values (EBVs) are:

400 1.2 0.8

BullEBVS =200 15 0.6

e Rows:

— Bulll

— Bull2
o Columns:

— Traitl = Milk yield (liters/year)

— Trait2 = Growth rate (kg/day)

— Trait3 = Fertility (calving interval adjustment)
You assign economic weights to each trait:
0.0027
50

EconomicWeights =
100

41

2.2.9 Tasks

1. Compute:

TotalValue = BullEBVs x EconomicWeights

e« What are the resulting values?
e Which bull is more valuable economically?

2. Interpret what multiplying by the economic weights means biologically.

3. Create the 3x3 identity matrix I and multiply it with BullEBVs.

e« What does it return?
e What does the identity matrix mean in this case?

4. Subset the BullEBVs matrix to remove Traitl (milk yield) and recalculate TotalValue.

e How does this change the ranking?

2.2.10 Visualization Tasks
5. Create a bar plot comparing TotalValue for Bulll and Bull2.
6. Create a heatmap of the EBVs.
e Label rows and columns.

o Enable clustering.

2.2.11 Interpretation Questions

e How do economic weights affect trait importance?

e Why might you ignore milk yield in some breeding programs?

e What is the value of heatmaps in visualizing multivariate trait data?
e Can this method be extended to more bulls and more traits?

42

2.2.12 Plant Breeding — Trait Contributions from Parental Lines

You are breeding a new rice variety from three parental lines. The key traits are:

¢ T1 = Drought resistance
e T2 = Yield
o T3 = Maturation time

The following trait values (normalized 1-10) have been measured:

7 5 37
ParentTraits = 6 8 4
5 6 6

¢ Rows:

— P1 (Parent 1)
— P2 (Parent 2)
— P3 (Parent 3)

e Columns:

— T1 = Drought resistance
— T2 = Yield

— T3 = Maturation time

You design a hybrid with contributions from each parent as follows:
[0.57
HybridWeights = 03
0.2

2.2.13 Tasks

1. Compute the HybridTrait vector by:

43

HybridTraits = HybridWeights” x ParentTraits
Show the steps and result.

2. Explain what it means biologically when one parent contributes more to a particular
trait.

3. Create an identity matrix I and multiply it with ParentTraits.

e« What do you observe?
e What does I x ParentTraits represent?

4. Subset the ParentTraits matrix to include only T1 and T2. Recalculate the hybrid traits.

¢ Discuss how removing a trait affects your outcome.

2.2.14 Visualization Tasks

5. Generate a heatmap of the ParentTraits matrix.

e Label the rows with parent names and columns with trait names.
o Enable row/column clustering.

6. Create a bar plot showing the HybridTraits (T1, T2, T3).

o Color code each bar by trait.
o What trait contributes most?

2.2.15 Interpretation Questions

o How does the weighting of parents affect the hybrid’s performance?

What does the identity matrix represent here?

If you used equal weights (for each), how would the hybrid traits change?
What real-world limitations does this simplified model ignore?

(]

44

2.2.16 Managing Matrices and Weight Vectors Using Lists in R

Now that you have completed four biological matrix problems — Protein concentration, gene-
to-protein mapping, bull breeding value ranking, and plant trait combinations — it’s time to
organize your data and weights using R’s list structure.

In this task, you will:

e Group each example’s matrix and its corresponding weight vector inside a named list.
e Combine these named lists into a larger list called bioList.

o Use list indexing to repeat your earlier calculations and visualizations.

e Reflect on the benefits and challenges of using structured data objects.

2.2.17 Step 1: Create a master list

You should now build a named list called bioList containing the following four elements:

o ProteinConc = list(matrix = ProteinMatrix, weights = WeightVector)

o ProteinMap = list(matrix = ProteinMapping, weights = TranslationWeights)
o Plant = list(matrix = ParentTraits, weights = Hybrid Weights)

o Animal = list(matrix = BullEBVs, weights = EconomicWeights)

Hint: Each inner list should contain both:

e matrix = the main data matrix
o weights = the vector used for multiplication

No R code is required here (You have them from previous part, use inside same rmd /notebook
file) — just structure your data like this in your workspace.

2.2.18 Tasks

1. List the full names of each component in bioList. What are the names of the top-level
and nested components?

2. Access each matrix and its corresponding weights using list indexing.

¢ How would you extract only the matrix of the Plant entry?
e How would you extract the weights for the Protein concentration entry?

3. Use the correct matrix and weights to perform:

e ProteinConc: Weighted gene expression score
¢ ProteinMap: Contribution of transcripts to each protein
o Plant: Hybrid trait values

45

Animal: Bull total economic value

. Subset one matrix in each sublist (e.g., drop a trait or feature) and repeat the weighted

calculation.

What changes in the results?
Which traits/genes have the strongest influence?

2.2.19 Visualization Tasks

. Generate one heatmap for any matrix stored in bioList.

Choose one (e.g., ProteinMap or Plant)
Apply clustering to rows and/or columns
Label appropriately

. Generate two bar plots:

One showing the result of weighted trait aggregation for the Plant hybrid
One showing the total breeding values for each bull

2.2.20 Interpretation Questions

How does structuring your data using a list help with clarity and reproducibility?
What risks or challenges might occur when accessing elements from nested lists?
Could this structure be scaled for real datasets with many samples or traits?

How would you loop over all elements in bioList to apply the same function?

How can this list structure be useful for building automated bioinformatics pipelines?

Your Rmarkdown file(s) should include:

(]

knit

All matrix calculations (tasks). Also, name the rows and columns of each matrix accord-
ingly.

All interpretation answers

All plots (output from embedded code)

And your commentary blocks for each code chunk

your rmd (or Notebook) file as html/pdf file and push both the rmd (or

Notebook) and html/pdf files

2.3 Factor Variables

Important for categorical data

46

2.3.1 Creating Factors

Factors are used to represent categorical data in R. They are particularly important for bio-
logical data like genotypes, phenotypes, and experimental conditions.

Simple factor: DNA sample origins

origins <- c("Human", "Mouse", "Human", "Zebrafish", "Mouse", "Human")
origins_factor <- factor(origins, levels = c("Human", "Zebrafish", "Mouse"))
origins_factor

[1] Human Mouse Human Zebrafish Mouse Human
Levels: Human Zebrafish Mouse

Check levels (categories)
levels(origins_factor)

[1] "Human" "Zebrafish" "Mouse"

Create a factor with predefined levels

treatment_groups <- factor(c("Control", "Low_dose", "High_dose", "Control", "Low_dose"),
levels = c("Control", "Low_dose", "High_dose"))

treatment_groups

[1] Control Low_dose High dose Control Low_dose
Levels: Control Low_dose High_dose

Ordered factors (important for severity, stages, etc.)

disease_severity <- factor(c("Mild", "Severe", "Moderate", "Mild", "Critical"),
levels = c("Mild", "Moderate", "Severe", "Critical"),
ordered = TRUE)

disease_severity

[1] Mild Severe Moderate Mild Critical
Levels: Mild < Moderate < Severe < Critical

Compare with ordered factors
disease_severity[1] > disease_severity[2] # Is Mild less severe than Severe?

47

[1] FALSE

2.3.2 Factor Operations

Count frequencies
out <- table(origins_factor)
out

origins_factor
Human Zebrafish Mouse
3 1 2

out ["Human"]

Human
3

Calculate proportions
prop.table(out)

origins_factor
Human Zebrafish Mouse
0.5000000 0.1666667 0.3333333

Change reference level (important for statistical models)
origins_factor_relevel <- relevel(origins_factor, ref = "Mouse")
origins_factor_relevel

[1] Human Mouse Human Zebrafish Mouse Human
Levels: Mouse Human Zebrafish

Convert to character
origins_char <- as.character(origins_factor)

Plot factors - Basic barplot

barplot(table(origins_factor),
col = c("blue", "green", "red"),

48

main = "Sample Origins",
ylab = "Count")

Sample Origins

o _
)
o _|

e o

[

-} —

o)

O o
—
o _|
o

Human Zebrafish Mouse

1 Note

Factor level-ing and relevel-ing are different. relevel redefines what the reference
should be. For example, in an experiment, you have control, treatmentl, treatment?2
groups. Your reference might be control. So, all of your comparisons/statistics are on
the basis of control. But you might change the reference (by relevel to treatmentl
and all of your comparison will be on the basis of treatmentl group. Got it?

More advanced plot with factors:

gene_expr <- c(5.2, 7.8, 4.5, 12.3, 8.1, 3.7)
names (gene_expr) <- as.character(origins)

Boxplot by factor
boxplot(gene_expr ~ origins,
col = "lightblue",
main = "Gene Expression by Sample Origin",
xlab = "Origin",
ylab = "Expression Level")

49

Gene Expression by Sample Origin

N
_ -
g
g 2+
&
B 00 — |
%)
o)
S © —
X -
L []

< - []

I I I
Human Mouse Zebrafish
Origin
1 Note

Did you notice how factor level-ing changes the appearance of the categories in the
plots? See the barplot and the boxplot again. Where are Zebrafish and Mouse now in
the plots? Why are their positions on the x-axis changed?

1 Note

Keep noticing the output formats. Sometimes the output is just a number, sometimes a
vector or table or list, etc. Check prop.table(table(origins_factor)). How is it?

1 Got it?

prop <- prop.table(table(origins_factor)) — is a named numeric vector (atomic
vector). prop$Human or similar won’t work. Check this way: prop prop["Human"];
prop["Mouse"]; prop["Zebrafish"]

Or make it a data frame (df) first, then try to use normal way of handling df.

Accessing the Output:

prop <- prop.table(table(origins_factor))
prop #What do you see? A data frame? No difference?

50

origins_factor
Human Zebrafish Mouse
0.5000000 0.1666667 0.3333333

prop["Human"]; prop["Mouse"]; prop["Zebrafish"]

Human
0.5

Mouse
0.3333333

Zebrafish
0.1666667
2.4 Subsetting Data

2.4.1 Vectors

Create a vector

expression_data <- c¢(3.2, 4.5, 2.1, 6.7, 5.9, 3.3, 7.8, 2.9)
names (expression_data) <- pasteO("Sample_ ", 1:8)
expression_data

Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 Sample_6 Sample_7 Sample_8
3.2 4.5 2.1 6.7 5.9 3.3 7.8 2.9

Subset by position

expression_datal[3] # Single element
Sample_3

2.1
expression_datalc(l, 3, 5)] # Multiple elements

Sample_1 Sample_3 Sample_5
3.2 2.1 5.9

51

expression_data[2:5] # Range

Sample_2 Sample_3 Sample_4 Sample_5
4.5 2.1 6.7 5.9

Subset by name
expression_data["Sample_6"]

Sample_6
3.3

expression_datal[c("Sample_1", "Sample_8")]

Sample_1 Sample_8
3.2 2.9

Subset by condition
expression_data[expression_data > 5] # Values > 5

Sample_4 Sample_5 Sample_7
6.7 5.9 7.8

expression_datalexpression_data >= 3 & expression_data <= 6] # Values between 3 and 6

Sample_1 Sample_2 Sample_5 Sample_6
3.2 4.5 5.9 3.3

2.4.2 Data Frames

Create a data frame
gene_df <- data.frame(
gene_id = c("BRCA1", "TP53", "MYC", "EGFR", "GAPDH"),
expression = c(8.2, 6.1, 9.5, 7.0, 10.0),
mutation = factor(c("Yes", "No", "Yes", "No", "No")),
pathway = c("DNA Repair", "Apoptosis", "Cell Cycle", "Signaling", "Metabolism")

52

gene_df

gene_id expression mutation pathway
1 BRCA1 8.2 Yes DNA Repair
2 TP53 6.1 No Apoptosis
3 MYC 9.5 Yes Cell Cycle
4 EGFR 7.0 No Signaling
5 GAPDH 10.0 No Metabolism

Subsetting by row index

gene_df[1:3, 1] # First three rows, all columns
gene_id expression mutation pathway

1 BRCA1 8.2 Yes DNA Repair

2 TP53 6.1 No Apoptosis

3 MYC 9.5 Yes Cell Cycle

Subsetting by column index
gene_df[, 1:2] # All rows, first two columns

gene_id expression

1 BRCA1 8.2
2 TP53 6.1
3 MYC 9.5
4 EGFR 7.0
5 GAPDH 10.0

Subsetting by column name
gene_df [, c("gene_id", "mutation")]

gene_id mutation

1 BRCA1 Yes
2 TP53 No
3 MYC Yes
4 EGFR No
5 GAPDH No

53

Using the $ operator
gene_df$expression

(1] 8.2 6.1 9.5 7.0 10.0

gene_df$mutation

[1] Yes No Yes No No
Levels: No Yes

Subsetting by condition
gene_df [gene_df$expression > 8,]

gene_id expression mutation pathway

1 BRCA1 8.2 Yes DNA Repair

MYC 9.5 Yes Cell Cycle

5 GAPDH 10.0 No Metabolism
gene_df [gene_df$mutation == "Yes", 1]

gene_id expression mutation pathway

1 BRCA1 8.2 Yes DNA Repair

MYC 9.5 Yes Cell Cycle

Multiple conditions

gene_df [gene_df$expression > 7 & gene_df$mutation == "No",]
gene_id expression mutation pathway
5 GAPDH 10 No Metabolism

Logical Operators

Operator Meaning Example
== Equal to X ==

1= Not equal x =

< Less than x <5

> Greater than x>5
<= Less or equal x <=5

54

Operator Meaning Example

>= Greater or equal x >= 5

! Not I(x < 5)

| OR x <5] x>10
& AND x>5 & x <10

2.4.3 Row Names in Data Frames

Row names are particularly important in bioinformatics where genes, proteins, or samples are
often used as identifiers.

Setting row names for gene_df
rownames (gene_df) <- gene_df$gene_id

gene_df

gene_id expression mutation pathway
BRCA1 BRCA1 8.2 Yes DNA Repair
TP53 TP53 6.1 No Apoptosis
MYC MYC 9.5 Yes Cell Cycle
EGFR EGFR 7.0 No Signaling
GAPDH GAPDH 10.0 No Metabolism

We can now drop the gene_ id column, if required.

gene_df_clean <- gene_df[, -1] # Remove the first column
gene_df_clean

expression mutation pathway
BRCA1 8.2 Yes DNA Repair
TP53 6.1 No Apoptosis
MYC 9.5 Yes Cell Cycle
EGFR 7.0 No Signaling
GAPDH 10.0 No Metabolism

Access rows by name
gene_df_clean["TP53",]

expression mutation pathway
TP53 6.1 No Apoptosis

55

Check if row names are unique
any(duplicated(rownames (gene_df_clean)))

[1] FALSE

Handle potential duplicated row names
NOTE: R doesn't allow duplicate row names by default
dup_genes <- data.frame(

expression = ¢(5.2, 6.3, 5.2, 8.1),

mutation = c("Yes", "No", "Yes", "No")

)

This would cause an error:
#rownames (dup_genes) <- c("BRCA1", "BRCA1", "TP53", "EGFR")

Instead, we can preemptively make them unique:
proposed_names <- c("BRCA1", "BRCA1", "TP53", "EGFR")
unique_names <- make.unique(proposed_names)
unique_names # Show the generated unique names

[1] "BRCA1" "BRCA1.1" "TP53" "EGFR"

Now we can safely assign them
rownames (dup_genes) <- unique_names
dup_genes

expression mutation

BRCA1 5.2 Yes

BRCA1.1 6.3 No

TP53 5.2 Yes

EGFR 8.1 No
1 Note

Why is unique name important for us? Imagine this meaningful biological scenario: one
gene might transcribed into many transcript isoforms and hence many protein isoforms.
From RNAseq data, we might get alignment count for each gene. But then we can
separate the count for each transcript. One gene has one name or ID, but the transcripts
are many for the same gene! So, we can denote, for example, 21 isoform of geneA

56

like genA.1, geneA.2, geneA.3,......, geneA.21. See this link for MBP gene. How many
transcript isoforms does it have?

2.5 Homeworks: Factors, Subsetting, and Biological Insight

1. (Factor vs Character) Explain the difference between a character vector and a factor
in R. Why would mutation_status be a factor and not just a character vector?

2. (Factor Level Order) You observed the following bacterial species in gut microbiome
samples:

species <- c("Lactobacillus", "Bacteroides", "Escherichia", "Bacteroides", "Lactobacillus"

species_factor <- factor(species, levels = c("Bacteroides", "Escherichia", "Lactobacillus"

What will levels(species_factor) return? Why?

3. Given the factor:
disease_severity <- factor(c("Mild", "Severe", "Moderate"), levels = c("Mild", "Moderate",

What will be the result of disease_severity[1] < disease_severity[2] and why?

4. You computed:
prop <- prop.table(table(species_factor))

How do you extract the proportion of “Escherichia” samples from prop? Is prop$Escherichia
valid?

5. Interpret what this query returns:
gene_df [gene_df$expression > 7 & gene_df$mutation == "No",]

What type of genes does it select?

6. You have:

Samples <_ C(llell s ||KO" s ||lel s ||KO n s "wT“)
expression <- c(5.2, 8.1, 4.3, 9.0, 5.7)

Make a dataframe using these 2 vectors first. Then,

(a) Create a factor group_factor for the samples.

57

https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=4155

(b) Use tapply() to calculate mean expression per group.

1 Note

Use 7tapply () to see how to use it.

Hint: You need to provide things for X, INDEX, FUN. You have X, INDEX in this small
dataframe. The FUN should be applied thinking of what you are trying to do. You are
trying to get the mean or average, right?

(c) Plot a barplot of average expression for each group.

7.

10.

Use the gene_df example. Subset the data to find genes with:

expression > 8
pathway is either “Cell Cycle” or “Signaling”

. Create an ordered factor for the disease stages: c("Stage I", "Stage III", "Stage

II", "Stage IV", "Stage I"). Then plot the number of patients per stage using
barplot (). Confirm that "Stage III" > "Stage I" is logical in your factor.

. Suppose gene_data has a column type with values “Oncogene”, “Tumor Suppressor”,

and “Housekeeping”.

Subset all “Oncogene” rows where expression > 8.
Change the reference level of the factor type to “Housekeeping”

Simulate expression data for 3 tissues (see the code chunk below): We are going to use
rnorm() function to generate random values from a normal distribution for this purpose.
The example values inside the rnorm() function means we want:

30 values in total,
average or mean value = 8,
standard deviation of expression is 2.

You can play with the numbers to make your own values.

rep() function is to replicate things (many times). In this example, we have rep(c("brain",
"liver", "kidney"), each = 10). We will be having 10x “brains”, followed by 10x “liver”,
followed by 10x “kidney”. So, if you have changed your values inside the rnorm() function,
make this value meaningful for you. Now we have 3 things, each=10. So, 3*10=30 is matching
with the total value inside rnorm() function. Got it?

set.seed(42) #just for reproducibility. Not completely needed
gene_expr <- rnorm(30, mean = 8, sd = 2)
tissue <- rep(c("brain", "liver", "kidney"), each = 10)

o8

tissue_factor <- factor(tissue, levels = c("liver", "brain", "kidney"))

o Make a boxplot showing expression per tissue.
o Which tissue shows the most variable gene expression? (Use tapply() + sd())

1 Note

Hint: Variability is an expression of measuring standard deviation (sd) just by squaring
it. So, var = sd”2. Well, do you see how to use sd inside tapply () function? Use
7tapply () to know how to use it.

Use these questions as a self-check — reflect on why each step works before moving on to the
next level (question).

Push your .Rmd file and share by Friday 10PM BD Time.

2.6 Conditionals
2.6.1 if-else statement
General structure of if-else statement:

if (conditionl) {

Code executed when conditionl is TRUE
} else if (condition2) {

Code executed when conditionl is FALSE but condition2 is TRUE
} else {

Code executed when all conditions above are FALSE

}
Let’s use it now.

if-else statement
gene_value <- 6.8

if (gene_value > 10) {
print("High expression")

} else if(gene_value > 5) {
print ("Medium expression")

} else {
print("Low expression")

59

[1] "Medium expression"

Visualize it using the image below.

Gene Expression Categorization

wedmsoresson [

. t ® +
0 5 6.8 10

gene_value £5 5 < gene_value =10 gene_value > 10

gene_value <— 6.8

if (gene_value > 18) {
print{"High expression")

} else if (gene_value > 5) {
print("Medium expression")

} else {
print("Low expression")

|}

2.6.2 ifelse statement for vectors

ifelse is binary in nature. So, we can categorize only 2 things using ifelse. The structure
is:

ifelse(test_or_condition, "value_if condition_is TRUE", "value_ if condition_is FALSE")
See this example:
expression_values <- c(12.5, 4.3, 8.1, 2.2)

labels <- ifelse(expression_values > 5, "Upregulated", "Downregulated")
labels

[1] "Upregulated" "Downregulated" "Upregulated" "Downregulated"

60

Gene Expression Categorization with ifelse()

Downregulated Upregulated

®] + ® ® {
0 2.2 43 5 8.1 12.5 15
expression_values €5 expression_values > 5

expression_values <- c(12.5, 4.3, 8.1, 2.2)
labels <- ifelse(expression_values > 5,
"Upregulated",
"Downregulated")
labels

[1] "Upregulated" "Downregulated" "Upregulated" "Downregulated"

1 Note

ifelse has 3 things inside the parentheses, right? The first one is the condition, the
second one is the category we define if the condition is met, and the third thing is the
other remaining category we want to assign if the condition is not met. So, it’s usage is
perfect to say if a gene/transcript is upregulated or downregulated (binary classification).

If we still want to categorize more than 2 categories using ifelse, we need to use it in a nested
way. The structure will be like this:

ifelse(testl, valuel,
ifelse(test2, value?2,
value3))

See this example:

ifelse() for vectors
expression_levels <- c(2.5, 5.8, 7.2, 3.1, 6.9)
expression_category <- ifelse(expression_levels > 6,

"High“ ,
ifelse(expression_levels > 4, "Medium", "Low"))
expression_category
[1] “LOW" llMedium" "High" "LOW" ||High"

61

Two-Step Process of Nested ifelse() Functions

Step 1: First ifelse() - Separating "High" from the rest

e) — @ O : -0 |
0 25 31 58 6 6972 8
expression_levels <6 expression_levels > 6

ifelse(expression_levels > 6, "High", ...) ’

Values > 6 are labeled "High", others need further processing

Step 2: Second ifelse() - Processing remaining values

Low Medium
e) — @ t o + {
0 25 3.1 4 5.8 6 8

expression_levels < 4 4 < expression_levels =6

ifelse(expression_levels > 4, "Medium", "Low")

Applied only to values = 6 (from Step 1)

Values > 4 and = 6 are "Medium", values = 4 are "Low"

i Note

You remember the general structure of ifelse loop, right? the second thing after the
first , is the assigned category if the condition is met. So, we assigned it as High here
in this example. But then after the second , there is a second ifelse loop instead of a
category. The second loop makes 2 more binary categories Medium and Low, and our task
of assigning 3 categories is achieved.

dplyr package has a function named case-when() to help us use as many categories we want.
The same task would be achieved like this:

Requires dplyr package
#install.packages("dplyr") #decomment if you need to install the package
library(dplyr)
expression_levels <- c(2.5, 5.8, 7.2, 3.1, 6.9)
labels <- case_when(
expression_levels > 6 ~ "High",
expression_levels > 4 ~ "Medium",
TRUE ~ "Low" # Default case

62

)
labels

[1] "LOW" "Medium" IIHighll "LOW" "High"

1 Note

Do you see the point how you would use the ifelse loop if you wanted to write a function
to make 4 or 5 categories? If not, pause and re-think. You need to see the point. But
anyway, categorizing more than 2 is better using if-else statement

2.6.3 for loop

genes <- c("BRCA1", "TP53", "MYc", "CDC2", "MBP")
expr <- c(8.2, 5.4, 11.0, 5.4, 13.0)

for (i in 1:length(genes)) {
status <- if (expr[i] > 10) "High"
else if (expr[i] > 6) "Moderate"
else "Low"
cat(genes[i], "has", status, "expression\n")

BRCA1 has Moderate expression
TP53 has Low expression
MYC has High expression
CDC2 has Low expression
MBP has High expression

In-class Task:

e Make a data frame using genes and expr.
o Add/flag the categories High, Moderate and Low you get using the for loop in a new
column named expression_level or similar.

Step 1: Vectors

genes <- c("BRCA1", "TP53", "MYyc", "CDC2", "MBP")
expr <- c(8.2, 5.4, 11.0, 5.4, 13.0)

63

Step 2: Create a data frame
gene_df <- data.frame(gene = genes, expression = expr)

Step 3: Add an empty column for expression level
gene_df$expression_level <- NA

Step 4: Use for loop to fill in the expression_level column
for (i in 1:nrow(gene_df)) {
gene_df$expression_level[i] <- if (gene_df$expression[i] > 10) {
"High"
} else if (gene_df$expression[i] > 6) {
"Moderate"
} else {
IILOWII

View the final data frame
print(gene_df)

gene expression expression_level

1 BRCA1 8.2 Moderate
2 TP5b3 5.4 Low
3 MYC 11.0 High
4 CDC2 5.4 Low
5 MBP 13.0 High

2.6.4 while loop

Context:

You are preparing biological samples (e.g., blood, DNA extracts) for analysis. You have a set
of samples labeled Sample 1 to Sample 5. You want to check each one in order and confirm
that it’s ready for analysis. Use a while loop to process the samples sequentially.

i<-1

while (i <= 5) {
cat("Sample", i, "is ready for analysis\n")
i<-1i+1

64

Sample 1 is ready for analysis
Sample 2 is ready for analysis
Sample 3 is ready for analysis
Sample 4 is ready for analysis
Sample 5 is ready for analysis

2.6.5 next and break

Context:

You are screening biological samples (e.g., tissue or blood) in a quality control process. Some
samples are good, some are suboptimal (not contaminated but poor quality), and some are
contaminated (must be flagged and stop further processing). Use next to skip suboptimal
samples and break to immediately stop when a contaminated sample is found.

samples <- c("good", "bad", "good", "contaminated")

for (i in samples) {
if (i == "contaminated") {
print ("Stop! Contaminated sample.")
break

}
if (i == "bad") next
print(paste("Processing", i))

}

[1] "Processing good"
[1] "Processing good"
[1] "Stop! Contaminated sample."

2.7 Writing Functions in R

The syntax to write an R function is:

function_name <- function() {

}

Let’s use it.

65

2.7.1 Flag gene expression

flag_expression <- function(value) {
if (value > 10) {
return("High")
} else if (value > 5) {
return("Moderate")
} else {
return("Low")

flag_expression(8.3)

[1] "Moderate"
Apply to a vector

expr_values <- c(12.2, 4.4, 7.5)
sapply (X=expr_values, FUN=flag_expression)

[1] "High" "Low" "Moderate"

2.7.2 Function with multiple arguments

gene_status <- function(gene, expression, threshold = 6) { #gene = "string", expression =
label <- ifelse(expression > threshold, "Up", "Down")
return(paste(gene, "is", label, "regulated"))

}

gene_status("TP53", 8.1, threshold = 9)

[1] "TP53 is Down regulated"

66

2.7.3 Return a list

calc_stats <- function(values) {
return(list(mean = mean(values), sd = sd(values)))

}

calc_stats(c(4.2, 5.5, 7.8))

$mean
[1] 5.833333

$sd
[1] 1.823001

2.8 Homeworks: Control Structures and Functions

1. for Loop + Conditional: Gene Expression Classifier

You have:

genes <- c("TP53", "EGFR", "MYC", "BRCA2")
expr <- c(4.8, 6.3, 11.7, 9.5)

Task:

Loop over the gene names and print: <Gene> has <Low/Moderate/High> expression

Based on:

o High: >10
e Moderate: 6-10
e Low: 6

2. next: Sample Screening Skips Bad Samples

samples <- c("good", "bad", "good", "contaminated", "good", "bad")

Context:

Bad samples should be skipped, only good and contaminated should be reported.
Task:

67

Use a for loop with next to skip bad samples and print a message for others: Sample X is
flagged for analysis

3. break: Stop at Contaminated Sample Use the same samples vector above.

Task:

Print Analyzing sample X for each sample. But if a contaminated sample is found, stop
processing immediately and print Contamination detected! Halting...

4. while Loop: Sample Prep Countdown

Context:
You're preparing 5 samples.
Task:

Use a while loop to print: Sample <i> is ready for analysis from 1 to 5.

5. while + Condition: Until Threshold You’re measuring a protein level that starts at 2.
With each measurement, it increases randomly between 0.5 and 1.5 units.

Task: Use a while loop to simulate the increase until the protein level exceeds 10. Print each
step.

level <- 2
#your code goes here

6. Custom Function: Classify BMI
Write a function bmi_category(weight, height) that:

o Takes weight (kg) and height (m)
o Calculates BMI: weight /height?

Returns Underweight if <18.5, Normal if 18.5-24.9, Overweight if 25-29.9, Obese if 30.
Test it:

bmi_category(65, 1.70)

7. Function: Gene Risk Calculator

68

Write a function gene_risk(expr, mut_status):
High if expression > 9 and mutation = Yes.
Moderate if expression > 6.

Low otherwise.

Test on vectors

expr <- c(56.5, 10.1, 7.3)
mut_status <- c("No", "Yes", "No")

Hint: Use mapply().

8. for Loop + Data Frame Make a data frame of 4 genes and expression values. Add a new
column category using a for loop that assigns High, Moderate, Low based on expression.

9. Function + Error Checking Write a function get_expression_level(gene, df) that:
Takes a gene name and a data frame with gene and expr columns
If the gene is present, returns Low, Moderate or High.
If missing, returns Gene not found
Test it with:
df <- data.frame(gene = c("TP53", "BRCA1"), expr = c(5.5, 10.5))

get_expression_level ("BRCA1", df)
get_expression_level ("EGFR", df)

2.9 Handling Missing/Wrong Values

2.9.1 Identifying Issues

Create data with missing values
clinical_data <- data.frame(
patient_id = 1:5,
age = c(25, 99, 30, -5, 40), # -5 is wrong, 99 is suspect
bp = c(120, NA, 115, 125, 118), # NA is missing
weight = c(65, 70, NA, 68, -1) # -1 is wrong
)

clinical_data

69

patient_id age bp weight

1 1 25 120 65
2 2 99 NA 70
3 3 30 115 NA
4 4 -5 125 68
5 5 40 118 -1

Check for missing values
is.na(clinical_data)

patient_id age bp weight

[1,] FALSE FALSE FALSE FALSE
[2,] FALSE FALSE TRUE FALSE
[3,] FALSE FALSE FALSE TRUE
(4,] FALSE FALSE FALSE FALSE
(5,] FALSE FALSE FALSE FALSE

colSums(is.na(clinical_data)) # Count NAs by column

patient_id age bp weight
0 0 1 1

Check for impossible values
clinical_data$age < 0

[1] FALSE FALSE FALSE TRUE FALSE

clinical_data$weight < O

[1] FALSE FALSE NA FALSE TRUE

Find indices of problematic values
which(clinical_data$age < O | clinical_data$age > 90)

[1] 2 4

70

2.9.2 Fixing Data

Replace impossible values with NA

clinical_data$agelclinical_data$age < O | clinical_data$age > 90] <- NA
clinical_data$weight[clinical_data$weight < 0] <- NA

clinical_data

patient_id age bp weight

1 1 25 120 65
2 2 NA NA 70
3 3 30 115 NA
4 4 NA 125 68
5 5 40 118 NA

Replace NAs with mean (common in biological data)
clinical_data$bplis.na(clinical_data$bp)] <- mean(clinical_data$bp, na.rm = TRUE)
clinical_data$weight[is.na(clinical_data$weight)] <- mean(clinical_data$weight, na.rm = TR
clinical_data

patient_id age bp weight

1 25 120.0 65.00000
NA 119.5 70.00000
30 115.0 67.66667
NA 125.0 68.00000
40 118.0 67.66667

g W
o W N

Replace NAs with median (better for skewed data)
clinical_data$agelis.na(clinical_data$age)] <- median(clinical_data$age, na.rm = TRUE)
clinical_data

patient_id age bp weight

1 25 120.0 65.00000
30 119.5 70.00000
30 115.0 67.66667
30 125.0 68.00000
40 118.0 67.66667

g W N -
g W N

71

2.10 Data Transformation
2.10.1 Introduction to Outliers

Outliers can significantly affect statistical analyses, especially in biological data where sample
variation can be high.

Create data with outliers
expression_levels <- c(2.3, 2.7, 3.1, 2.9, 2.5, 3.0, 15.2, 2.8)
boxplot (expression_levels,

main = "Expression Levels with Outlier",

ylab = "Expression")

Expression Levels with Outlier

(@)

12

Expression

2 4 6 8
I

2.10.2 Identifying Outliers

Statistical approach: Values beyond 1.5*%IQR
data_summary <- summary(expression_levels)
data_summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.300 2.650 2.850 4.312 3.025 15.200

IQR_value <- IQR(expression_levels)
upper_bound <- data_summary["3rd Qu."] + 1.5 * IQR_value
lower_bound <- data_summary["1st Qu."] - 1.5 * IQR_value

Find outliers

72

outliers <- expression_levels[expression_levels > upper_bound |
expression_levels < lower_bound]
outliers

[1] 15.2

2.10.3 Transforming Vectors

Mathematical transformations can normalize data, reduce outlier effects, and make data more
suitable for statistical analyses.

Original data

gene_exp <- c(15, 42, 87, 115, 320, 560, 1120)
hist(gene_exp, main = "Original Expression Values", xlab = "Expression")

Original Expression Values

Frequency
2
|

I I I I I I I
0 200 400 600 800 1000 1200

Expression

Log transformation (common in gene expression analysis)
log_exp <- log2(gene_exp)
hist(log_exp, main = "Log2 Transformed Expression", xlab = "Log2 Expression")

73

Log2 Transformed Expression

Frequency
1
|

I I I I I I
2 4 6 8 10 12

Log2 Expression

Square root transformation (less aggressive than log)
sqrt_exp <- sqrt(gene_exp)
hist(sqrt_exp, main = "Square Root Transformed Expression", xlab = "Sqrt Expression")

Square Root Transformed Expression

o0 —
3
c
Qo
>
(on
o 4
LL

o -

Sqrt Expression

Z-score normalization (standardization)
z_exp <- scale(gene_exp)
hist(z_exp, main = "Z-score Normalized Expression", xlab = "Z-score")

74

Z-score Normalized Expression

Frequency
2
|

O —
I I I I I I I
-1.0 -0.5 0.0 0.5 1.0 15 2.0
Z-score
Compare transformations
par(mfrow = c(2, 2))
hist(gene_exp, main = "Original")
hist(log_exp, main = "Log2")
hist(sqrt_exp, main = "Square Root")
hist(z_exp, main = "Z-score")
Original Log2
> >
2 2
o ¥ o W
ag; 03 T 1 1 08)- e 3| |
. 0 400 800 1200 2 6 8 10 12
gene_exp log_exp
Square Root Z-score
> >
2 2
<
qg)' mg —I—I—I qg)' 3] [] []
o ©° 1 1 | o ©° T T 1
- 0 10 20 30 40 -10 00 10 20
sqrt_exp z_exp

75

par(mfrow = c(1, 1)) # Reset plotting layout

2.10.4 Logical Expressions

Create gene expression vector
exp_data <- c(5.2, 3.8, 7.1, 2.9, 6.5, 8.0, 4.3)
names (exp_data) <- pasteO("Gene_ ", 1:7)

Basic comparisons

exp_data > 5 # Which genes have expression > 57

Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6 Gene_7
TRUE FALSE TRUE FALSE TRUE TRUE FALSE

exp_data <= 4 # Which genes have expression <=

Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6 Gene_ 7
FALSE TRUE FALSE TRUE FALSE FALSE FALSE

Store results in logical vector
high_exp <- exp_data > 6
high_exp

Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6 Gene_7
FALSE FALSE TRUE FALSE TRUE TRUE FALSE

Use logical vectors for subsetting
exp_datalhigh_exp] # Get high expression values

Gene_3 Gene_5 Gene_6
7.1 6.5 8.0

76

47

2.10.5 Logical Operators

Combining conditions with AND (&)
exp_data > 4 & exp_data < 7 # Expression between 4 and 7

Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6 Gene_ 7
TRUE FALSE FALSE FALSE TRUE FALSE TRUE

Combining conditions with OR ()
exp_data < 4 | exp_data > 7 # Expression less than 4 OR greater than 7

Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6 Gene_7
FALSE TRUE TRUE TRUE FALSE TRUE FALSE

Using NOT (!)
'high_exp # Not high expression

Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6 Gene_7
TRUE TRUE FALSE TRUE FALSE FALSE TRUE

Subsetting with combined conditions
exp_datalexp_data > 4 & exp_data < 7] # Get values between 4 and 7

Gene_1 Gene_5 Gene_ 7
5.2 6.5 4.3

2.10.6 Logical Functions

all() - Are all values TRUE?
all(exp_data > 0) # Are all expressions positive?

[1] TRUE

any() - Is at least one value TRUE?
any(exp_data > 7) # Is any expression greater than 77

77

[1] TRUE

which() - Get indices of TRUE values
which(exp_data > 6) # Which elements have expressions > 67

Gene_3 Gene_5 Gene_6
3 5 6

%in), operator - Test for membership
test_genes <- c("Gene_1", "Gene_5", "Gene_9")
names (exp_data) %in) test_genes # Which names match test_genes?

[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE

2.10.7 Practical Session
Check out this repo: https://github.com/genomicsclass/dagdata/

Download small example dataset
download.file("https://github.com/genomicsclass/dagdata/raw/master/inst/extdata/msleep_ggr
destfile = "msleep_data.csv")

Load data
msleep <- read.csv("msleep_data.csv")

Convert ‘vore’ column to factor and plot its distribution.
Create a matrix of sleep data columns and add row names.
Find and handle any missing values.

Calculate mean sleep time by diet category (vore).
Identify outliers in sleep__total.

AR o

2.11 Summary of the Lesson

In this lesson, we covered:
1. Factor Variables: Essential for categorical data in biology (genotypes, treatments, etc.)
e Creation, levels, ordering, and visualization

2. Subsetting Techniques: Critical for data extraction and analysis

78

e Vector and data frame subsetting with various methods
o Using row names effectively for biological identifiers

3. Matrix Operations: Fundamental for expression data

e Creation, manipulation, and biological applications
¢ Calculating fold changes and other common operations

4. Missing Values: Practical approaches for real-world biological data
o Identification and appropriate replacement methods
5. Data Transformation: Making data suitable for statistical analysis

¢ Log, square root, and z-score transformations
¢ Outlier identification and handling

6. Logical Operations: For data filtering and decision making

o Conditions, combinations, and applications

These skills form the foundation for the more advanced visualization techniques we’ll
cover in future lessons.

7. List: Fundamental for many biological data and packages’ output.
o Properties, accessing, and applications

8. We will know more about conditionals, R packages to handle data and visualization in
a better and efficient way.

2.12 Homework

1. Matrix Operations:

e Create a gene expression matrix with 8 genes and 4 conditions
e Calculate the mean expression for each gene

¢ Calculate fold change between condition 4 and condition 1

e Create a heatmap of your matrix

2. Factor Analysis:

e Using the iris dataset, convert Species to an ordered factor
e Create boxplots showing Sepal.Length by Species
¢ Calculate mean petal length for each species level

3. Data Cleaning Challenge:

79

e In the downloaded msleep_data.csv:

o Identify all columns with missing values

¢ Replace missing values appropriately

e Create a new categorical variable “sleep duration” with levels “Short”, “Medium”,
“Long”

4. List challenge:

e Make your own lists

¢ Replicate all the tasks we did

e You may ask Al to give you beginner-level questions but don’t ask to solve the questions
programmatically. Tell Al not to provide answers.

5. Complete Documentation:

e Write all code in R Markdown
¢ Include comments explaining your approach
e Push to GitHub

2.12.0.1 Due date: Friday 10pm BD Time

set.seed(42) # For reproducibility

gene_expr <- rnorm(30, mean = 8, sd = 2)

tissue <- rep(c("brain", "liver", "kidney"), each = 10)

tissue_factor <- factor(tissue, levels = c("liver", "brain", "kidney"))

tissue_factor

[1] brain brain brain brain brain brain brain brain brain brain
[11] liver 1liver 1liver 1liver liver liver 1liver 1liver 1liver liver
[21] kidney kidney kidney kidney kidney kidney kidney kidney kidney kidney
Levels: liver brain kidney

expr_data <- data.frame(
tissue = tissue_factor,
expression = gene_expr

)

#expr_data
head (expr_data)

80

tissue expression

1 brain 10.741917
2 brain 6.870604
3 brain 8.726257
4 brain 9.265725
5 brain 8.808537
6 brain 7.787751

boxplot (expression ~ tissue,
data = expr_data,

main = "Gene Expression by Tissue",
xlab = "Tissue",
ylab = "Expression",

col = c("lightblue", "lightgreen", "lightpink"))

Gene Expression by Tissue

O 1 1 |
[— |
s - !
[%)]
n o0 —
&)]
Q_ T
X O — :
(i , .

< — I

| | |
liver brain kidney
Tissue

sd_expression <- tapply(expr_data$expression, expr_data$tissue, sd)
sd_expression

liver brain kidney
3.261169 1.670898 2.312116

max_sd_tissue <- names(sd_expression) [which.max(sd_expression)]
max_sd_value <- sd_expression[which.max(sd_expression)]

81

cat("The tissue with the highest sd is:", max_sd_tissue,", with SD =", round(max_sd_value,

The tissue with the highest sd is: liver , with SD = 3.26

82

	L2: Data Representation
	Using R as a Calculator
	Variables
	Integer and Modulus division again

	Rounding
	Logical Operations
	Help and Documentation
	Working with Vectors
	Vector Operations

	Data Frame
	Gene Expression Table

	Homeworks
	Deadline

	L3: Data Transformation
	Getting Started
	Installation of R Markdown
	Basic Setup for Today's Session
	Building on Last HW:
	Preamble on random variables (RV):
	Basic Stuffs: Atomic Vector
	Basic Stuffs: Matrices
	Basic Stuffs: List

	🏡 Homeworks: Matrix and List Operations
	🧪 Protein Quantification in Biological Samples
	🔧 Tasks
	🧠 Interpretation Questions
	🧬 Gene-to-Protein Translation
	🔧 Tasks
	📊 Visualization Tasks
	🧠 Interpretation Questions
	🐄 Animal Breeding – Economic Ranking of Bulls by Traits
	🔧 Tasks
	📊 Visualization Tasks
	🧠 Interpretation Questions
	🌾 Plant Breeding – Trait Contributions from Parental Lines
	🔧 Tasks
	📊 Visualization Tasks
	🧠 Interpretation Questions
	🧠 Managing Matrices and Weight Vectors Using Lists in R
	📦 Step 1: Create a master list
	🔧 Tasks
	📊 Visualization Tasks
	🧠 Interpretation Questions

	Factor Variables
	Creating Factors
	Factor Operations

	Subsetting Data
	Vectors
	Data Frames
	Row Names in Data Frames

	🏡 Homeworks: Factors, Subsetting, and Biological Insight
	Conditionals
	if-else statement
	ifelse statement for vectors
	for loop
	while loop
	next and break

	Writing Functions in R
	Flag gene expression
	Function with multiple arguments
	Return a list

	🏡 Homeworks: Control Structures and Functions
	Handling Missing/Wrong Values
	Identifying Issues
	Fixing Data

	Data Transformation
	Introduction to Outliers
	Identifying Outliers
	Transforming Vectors
	Logical Expressions
	Logical Operators
	Logical Functions
	Practical Session

	Summary of the Lesson
	Homework

