Advanced Linux and Command Line Tools

Md Rasheduzzaman
2025-09-20

Advanced text processing, scripting, and system administration

Table of contents

1 Prerequisites 2
2 Advanced Text Processing Tools 2
2.1 grep - Advanced Pattern Matching . . . . . . .. ... ... o oL 2
2.1.1 BasicgrepUsage . . . . . . . . . o e 3

2.1.2  Advanced grep Options . . . . . . . . . ... oo 3

2.1.3 Regular Expressions with grep . . . . . . .. .. ... ... 4

2.2  awk - Pattern Scanning and Processing . . . . . . ... ... 4
2.2.1 Basicawk Syntax . . . . . . . . . ... e 4

2.2.2 Advanced awk Examples . . . . . . .. ..o 5

2.2.3 awk with Field Separators . . . . . . . .. ... ... ... .. ...... 5

2.3 cut - Extract Columns from Files . . . . . . . . .. ... o 0oL 5
2.3.1 Basiccut Usage. . . . . . . . . . . . e 6

2.4 sed- Stream Editor . . . .. ... L L 6
241 Basicsed Usage. . . . . . . . . . . e 6

2.4.2 Advanced sed Examples . . . . . ... ..o 7

2.5 sort-Sort Lines . . . . . ... 7
2.6 uniq - Remove Duplicate Lines . . . . . . ... ... ... ... ... ... 8

3 Advanced File Operations 8
3.1 find - Find Files and Directories . . . . . . . . .. .. ... ... ... ... 8
3.2 xargs - Execute Commands on Multiple Arguments . . . . .. ... ... ... 9

4  Shell Scripting Basics 9
4.1 Creating and Running Scripts . . . . . . . . . ... Lo oo 9
4.2 Basic Script Structure . . . . . ... oL 10



4.3 Control Structures . . . . . . . . . .
4.3.1 If-Else Statements . . . . . . . .. .. . ... . ... ... .
4.3.2 LOoOpS . . . o e e

4.4 File Manipulation Scripts . . . . . . . ..o
4.4.1 Q1: How to move files to subfolders . . . .. ... .. ... .......

5 High Performance Computing (HPC) Basics
5.1 SSH Connection to HPC Clusters . . . . . . . . .. .. .. ... .. ... ..
5.2  Environment Management on HPC . . . . . . .. ... ... ... 0.
5.2.1 Imstalling Conda on HPC . . . . . .. .. ... ... ... .. ..
5.3 Advanced Environment Setup . . . . . . .. ..o
54 CUDA Environment Configuration . . . . . . .. ... ... ... ... .....
5.4.1 Better way: . . . . . . Lo
5.4.2 Real work . . . . . .. e

Learn a lot from Harvard Chan Bioinformatics Core

1 Prerequisites

Before diving into this advanced material, you should be comfortable with:

¢ Basic Linux commands: 1s, cd, pwd, mkdir, cp, mv, rm, cat, head, tail

o File permissions: Understanding chmod and chown

o Text editors: Basic usage of nano or vim

¢ File system navigation: Understanding directory structure and paths

o Basic shell concepts: Environment variables, command history, tab completion

If you're not familiar with these concepts, please complete the Linux Basics tutorial first.

2 Advanced Text Processing Tools

2.1 grep - Advanced Pattern Matching

grep is one of the most powerful text search tools. Let’s explore its advanced features.


https://github.com/hbctraining
basics.qmd

2.1.1 Basic grep Usage

# Search for a pattern in a file
grep "pattern" file.txt

# Search case-insensitive
grep -i "pattern" file.txt

# Search in multiple files
grep "pattern" *.txt

# Search recursively in directories
grep -r "pattern" directory/

2.1.2 Advanced grep Options

# Show line numbers
grep —n "pattern" file.txt

# Show context (2 lines before and after)
grep -C 2 "pattern" file.txt

# Show only filenames with matches
grep -1 "pattern" *.txt

# Show only lines that DON'T match (invert)
grep -v "pattern" file.txt

# Use regular expressions
grep -E "7 [0-9]+" file.txt # Lines starting with numbers

# Count matches
grep -c "pattern" file.txt

# Show only the matching part
grep -o "pattern" file.txt



2.1.3 Regular Expressions with grep

# Lines starting with specific text
grep "“start" file.txt

# Lines ending with specific text
grep "end$" file.txt

# Lines containing either patternl OR pattern2
grep -E "patternl|pattern2" file.txt

# Lines with exactly 3 digits
grep -E "7[0-9]{3}$" file.txt

# Lines containing word boundaries
grep -w "word" file.txt

2.2 awk - Pattern Scanning and Processing

awk is a powerful programming language for text processing. It processes files line by line.

2.2.1 Basic awk Syntax

# Print entire lines
awk '{print}' file.txt

# Print specific fields (space-separated by default)
awk '{print $1}' file.txt # First field

awk '{print $2}' file.txt # Second field

awk '{print $1, $3}' file.txt # First and third fields

# Print last field
awk '{print $NF}' file.txt

# Print number of fields in each line
awk '{print NF}' file.txt



2.2.2 Advanced awk Examples

# Print lines with more than 3 fields
awk 'NF > 3' file.txt

# Print lines where first field equals "name"
awk '$1 == "name"' file.txt

# Print lines where second field is greater than 100
awk '$2 > 100' file.txt

# Add line numbers
awk '{print NR, $0}' file.txt

# Print specific lines (e.g., lines 5-10)
awk 'NR >= 5 && NR <= 10' file.txt

# Calculate sum of second column
awk '{sum += $2} END {print sum}' file.txt

# Print average of second column

awk '{sum += $2; count++} END {print sum/count}' file.txt

2.2.3 awk with Field Separators

# Use comma as field separator
awk -F',' '{print $1, $2}' file.csv

# Use multiple separators
awk -F'[,;]"' '{print $1, $2}' file.txt

# Use tab as separator
awk -F'\t' '{print $1, $2}' file.tsv
2.3 cut - Extract Columns from Files

cut is simpler than awk for basic column extraction.



2.3.1 Basic cut Usage

# Extract first column (space-separated)
cut -d' ' -f1 file.txt

# Extract first and third columns
cut -d' ' -f1,3 file.txt

# Extract columns 1-3
cut -d' ' -f1-3 file.txt

# Use comma as delimiter
cut -d',' -f1,2 file.csv

# Use tab as delimiter
cut -d$'\t' -f1,2 file.tsv

# Extract by character positions
cut -c1-10 file.txt # Characters 1-10
cut -c1,5,10 file.txt # Characters 1, 5, and 10

2.4 sed - Stream Editor

sed is used for text substitution and editing.

2.4.1 Basic sed Usage

# Replace first occurrence of "old" with "new"
sed 's/old/new/' file.txt

# Replace all occurrences of "old" with "new"
sed 's/old/new/g' file.txt

# Replace only on specific lines (e.g., line 5)
sed 'bs/old/new/' file.txt

# Delete lines containing "pattern"
sed '/pattern/d' file.txt



# Delete empty lines
sed '/7$/d' file.txt

# Print only lines 5-10

sed -n '5,10p' file.txt

2.4.2 Advanced sed Examples

# Replace multiple patterns
sed -e 's/oldl/newl/g' -e 's/o0ld2/new2/g' file.txt

# Use different delimiter (useful for paths)
sed 's|/old/path|/new/pathl|g' file.txt

# Case-insensitive replacement
sed 's/old/new/gi' file.txt

# In-place editing (modify file directly)
sed -i 's/old/new/g' file.txt

# Backup original file

sed -i.bak 's/old/new/g' file.txt

2.5 sort - Sort Lines

# Sort alphabetically
sort file.txt

# Sort numerically
sort —n file.txt

# Sort in reverse order
sort -r file.txt

# Sort by specific field
sort -k2 file.txt # Sort by second field

# Sort by multiple fields
sort -k1,1 -k2,2n file.txt # Sort by field 1, then by field 2 numerically



# Remove duplicates while sorting
sort —u file.txt

# Sort ignoring case

sort —-f file.txt

2.6 uniq - Remove Duplicate Lines

# Remove consecutive duplicate lines
uniq file.txt

# Count occurrences of each line
uniq -c file.txt

# Show only unique lines
uniq -u file.txt

# Show only duplicate lines
uniq -d file.txt

# Ignore case when comparing
uniq -i file.txt

3 Advanced File Operations
3.1 find - Find Files and Directories

# Find files by name
find . -name "x*.txt"

# Find files by type
find . -type £ # Files only
find . -type 4 # Directories only

# Find files by size
find . -size +100M # Files larger than 100MB
find . -size -1k # Files smaller than 1KB



# Find files by modification time
find . -mtime -7 # Modified in last 7 days
find . -mtime +30 # Modified more than 30 days ago

# Find files by permissions

find . -perm 644 # Files with 644 permissions
find . -perm -u+x # Files executable by owner
# Execute commands on found files

find . -name "*x.txt" -exec rm {} \; # Delete all .txt files
find . -name "*.log" -exec mv {} logs/ \; # Move .log files to logs directory

3.2 xargs - Execute Commands on Multiple Arguments

# Find and delete files
find . -name "*.tmp" | xargs rm

# Find and copy files
find . -name "*.txt" | xargs cp -t backup/

# Count lines in multiple files
find . -name "*.txt" | xargs wc -1

# Search in multiple files
find . -name "*.py" | xargs grep "import"

4 Shell Scripting Basics

4.1 Creating and Running Scripts



# Create a script file
nano my_script.sh

# Make it executable
chmod +x my_script.sh

# Run the script
./my_script.sh

4.2 Basic Script Structure

#!/bin/bash
# This is a comment

# Set variables
NAME="Linux User"
COUNT=10

# Use variables

echo "Hello, $NAME!"

echo "Count is: $COUNT"

# Use command substitution
CURRENT_DIR=$ (pwd)

echo "Current directory: $CURRENT_DIR"
# Use arithmetic

RESULT=$ ((COUNT * 2))

echo "Double count: $RESULT"

4.3 Control Structures

4.3.1 If-Else Statements

#!/bin/bash
if [ -f "file.txt" ]; then

echo "File exists"
else

10



echo "File does not exist"
fi

# String comparison

if [ "$1" = "hello" 1; then
echo "You said hello"

elif [ "$1" = "goodbye" ]; then
echo "You said goodbye"

else
echo "You said something else"

fi

4.3.2 Loops

#!/bin/bash

# For loop

for i in {1..5%}; do
echo "Number: $i"

done

# For loop with files
for file in *.txt; do

echo "Processing: $file"
done

# While loop

count=1

while [ $count -le 5 ]; do
echo "Count: $count"
count=$((count + 1))

done

4.4 File Manipulation Scripts
4.4.1 Q1: How to move files to subfolders

I have many files inside a folder. I want to move them into two sub-folders named f1 and £2
(I made them using mkdir -p f1 £2). How to do that?

11



This is the way:

#!/bin/bash
# move_files.sh

# Create subdirectories if they don't exist
mkdir -p f1 £2

# Counter for files
i=0

# Loop through all .fastq.gz files (sorted by version)
for file in $(1s *.fastq.gz | sort -V); do
if [ $1i -le 400 ]; then
mv "$file" f1/
echo "Moved $file to f1/"
else
mv "$file" £2/
echo "Moved $file to f2/"
fi
i=$((1 + 1))

done

echo "File moving completed!"
echo "Files in f1: $(1s f1/ | wc -1)"
echo "Files in f2: $(1s f2/ | wc -1)"

Here, I am sending fastq.gz files having 0-400 in their name to £1 folder and remaining ones
to £2. You just need to use your file naming pattern in the code block, and you are all set
For example, if you have many .fasta files, use .fasta instead of .fastq.gz. You got the
idea, right?

How to execute/run this file now? Run these:

chmod +x move_files.sh
./move_files.sh

chmod +x is making the file named move_files.sh executable. Then we are running it using
./move_files.sh.

12



5 High Performance Computing (HPC) Basics

5.1 SSH Connection to HPC Clusters

I am going to connect to Uni-Greifswald’s Brain cluster.
ssh username@brain.uni-greifswald.de

You have to use your real username and password. Now, let’s get an interactive
session to the gpu compute node (it is named “vision” for uni-greifswald’s gpu node, check for
yours).

srun --pty --gres=gpu:1l --partition=vision --mem=16g -t 12:00:00 bash -i

So, I am taking the session for 12 hours.

5.2 Environment Management on HPC
5.2.1 Installing Conda on HPC

Let’s install conda for our environment management (if you don’t have already).

# Download the Miniconda installer for Linux
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

# Run the installer, specifying the installation path
bash Miniconda3-latest-Linux-x86_64.sh -b -p ~/miniconda_install/

Now, let’s initialize conda:

# Source the conda shell script to make the 'conda' command available
source ~/miniconda_install/bin/activate

# Initialize conda for the current shell session.
conda init bash

Since we're using an interactive session, we won’t need to manually source anything after this.
The conda init command makes it so we can use conda and conda activate as we normally
would.

N.B. We could make some aliases for conda commands to write conda codes in
shorter format, but we can do/see it later. Get used to the normal ones.

13



5.3 Advanced Environment Setup

Let’s make an environment and install our required tools there. Well, our goal is to make a
system where we will use some images/characters and make short videos using them to teach
Italian. We need to process photos, images, text, and sync lips (video) with audio/speech. We
need MuseTalk for this. Let’s configure our environment accordingly.

Step 1 — Create conda environment
# Create new environment for MuseTalk

conda create -n musetalk python=3.10
conda activate musetalk

Step 2 — Install Dependencies

# Install PyTorch (adapt cuda version to your cluster, here CUDA 11.8 example)
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --extra-index-url https://d

# HuggingFace core libs
pip install transformers accelerate diffusers safetensors

# MuseTalk repo (clone)
git clone https://github.com/TMElyralab/MuseTalk.git
cd MuseTalk

# Install requirements
pip install -r requirements.txt

# Install whisper encoder
pip install --editable ./musetalk/whisper

# Extra: ffmpeg for video processing
conda install -c conda-forge ffmpeg -y

Step 3 — Download MuseTalk Models
MuseTalk Hugging Face repo: https://huggingface.co/TMElyralab/MuseTalk We need: -
musetalk.pth (main model) - gfpgan (optional face enhancer)

Run inside MuseTalk:

mkdir checkpoints
cd checkpoints

14



# Download core model
wget https://huggingface.co/TMElyralab/MuseTalk/resolve/main/musetalk.pth

# Optional face enhancer
git clone https://github.com/TencentARC/GFPGAN.git
cd ..

5.4 CUDA Environment Configuration

5.4.1 Better way:

export CUDA_HOME=/usr/local/cuda-11.7
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/1ib64:$LD_LIBRARY_ PATH

In my HPC Cluster, it is cuda 11.7. I am configuring for that. We could add these lines in my
~/ .bashrc file as well. We might see it later.

Let’s load our cuda module first to get things done smoothly.
module load cuda/11.7
Now, make the yml file to make the environment with all the tools required.

name: musetalk3
channels:
- pytorch
- nvidia
- defaults
dependencies:
- python=3.10
- pip
- ffmpeg
- pip:
# PyTorch + CUDA 11.8 compatible with 11.7 system
- torch==2.1.0+cull8
- torchvision==0.16.0+cull8
- torchaudio==2.1.0+cull8
- —-extra-index-url https://download.pytorch.org/whl/cull8

# OpenMMLab dependencies

15



- mmcv==2.0.1 -f https://download.openmmlab.com/mmcv/dist/cull18/torch2.1.0/index.htm
- mmdet==3.1.0
- gradio

- opencv-python
- numpy

- scipy

- matplotlib

- tqdm

- pyyaml

- pillow

- soundfile

- librosa

- moviepy

- imageio

Save this as musetalk3.yml and run:

conda env create -f musetalk3.yml
conda activate musetalk3

Now, we have our environment ready to use. Let’s use it.
conda activate musetalk3
Now, install museetalk repo dependencies.
git clone https://github.com/TMElyralab/MuseTalk.git
cd MuseTalk
pip install -r requirements.txt
Let’s get the faces I want to use. I uploaded them to my Google Drive.
pip install gdown
# Get shareable link from Google Drive and copy file id
gdown https://drive.google.com/uc?id=FILE_ID -0 data/faces/alice.jpg

gdown https://drive.google.com/uc?id=FILE_ID -0 data/faces/bob.jpg

Modify the google drive links for the images and their destination name as you like it.

16



5.4.2 Real work

Now, let’s follow the author’s guideline.

pip install --no-cache-dir -U openmim
mim install mmengine

mim install "mmcv==2.0.1"

mim install "mmdet==3.1.0"

mim install "mmpose==1.1.0"

Let’s download the model’s weight.

sh ./download_weights.sh

# Check ffmpeg installation
ffmpeg -version

The conversation
pip install TTS

# Example: Alice speaking Italian

tts --text "Buon giorno, Bob! Come stai?" \
--model name tts_models/it/mai female/vits \
--out_path alice_buongiorno.wav

# Example: Bob replying

tts --text "Buon giorno, Alice! Va bene, grazie mille! Chi & questo?" \
--model_name tts_models/it/mai_male/vits \
--out_path bob_risposta.wav

17



	Prerequisites
	Advanced Text Processing Tools
	grep - Advanced Pattern Matching
	Basic grep Usage
	Advanced grep Options
	Regular Expressions with grep

	awk - Pattern Scanning and Processing
	Basic awk Syntax
	Advanced awk Examples
	awk with Field Separators

	cut - Extract Columns from Files
	Basic cut Usage

	sed - Stream Editor
	Basic sed Usage
	Advanced sed Examples

	sort - Sort Lines
	uniq - Remove Duplicate Lines

	Advanced File Operations
	find - Find Files and Directories
	xargs - Execute Commands on Multiple Arguments

	Shell Scripting Basics
	Creating and Running Scripts
	Basic Script Structure
	Control Structures
	If-Else Statements
	Loops

	File Manipulation Scripts
	Q1: How to move files to subfolders


	High Performance Computing (HPC) Basics
	SSH Connection to HPC Clusters
	Environment Management on HPC
	Installing Conda on HPC

	Advanced Environment Setup
	CUDA Environment Configuration
	Better way:
	Real work



